Skip to main content
Log in

Direct hydrothermal synthesis and characterization of framework-substituted Co(Mn)-Beta zeolites

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Isomorphously substituted Co(Mn)-Beta zeolites were directly synthesized through a static hydrothermal approach. The silica-metal precursor was prepared by co-hydrolysis of tetraethylorthosilicate with cobalt or manganese nitrates in acidic media, which was adjusted to the strong basic condition by adding the structural directing agent (tetraethylammonium hydroxide) and Al source (sodium aluminate) for the subsequent hydrothermal crystallization. The products were characterized by X-ray diffraction, inductively coupling plasma elemental analysis, Brunauer–Emmett–Teller surface area, nitrogen sorption isotherm, FT-IR, UV–vis, and SEM. The results show that Co or Mn ions are incorporated into the framework of zeolite Beta, and the thus obtained Co(Mn)-Beta zeolites are nano-structured zeolite crystallites. The acidic co-hydrolysis/considention is proposed to facilitate the formation of metal-bearing nucleus for growing Co(Mn)-Beta crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Fierro, M.A. Eberhardt, M. Houalla, D.M. Hercules, W.K. Hall, J. Phys. Chem. 100, 8468 (1996)

    Article  CAS  Google Scholar 

  2. L. Čapek, J. Dĕdeček, B. Wichterlová, J. Catal. 227, 352 (2004)

    Article  Google Scholar 

  3. C. Resini, T. Montanari, L. Nappi, G. Bagnasco, M. Turco, G. Busca, F. Bregani, M. Notaro, G. Rocchini, J. Catal. 214, 179 (2003)

    Article  CAS  Google Scholar 

  4. B.Z. Zhan, B. Modén, J. Dakka, J.G. Santiesteban, E. Iglesia, J. Catal. 245, 316 (2007)

    Article  CAS  Google Scholar 

  5. H. Einaga, S. Futamura, Catal. Commun. 8, 557 (2007)

    Article  CAS  Google Scholar 

  6. R.L. Wadlinger, G.T. Kerr, E.J. Rosinski, US Patent 33080691 (1967)

  7. J.B. Higgins, R.B. LaPierre, J.L. Schlenker, A.C. Rohrman, J.D. Wood, G.T. Kerr, W.J. Rohrbaugh, Zeolites 8, 446 (1988)

    Article  CAS  Google Scholar 

  8. J.N. Kondo, S. Yang, Q. Zhu, S. Inagaki, K. Domen, Appl. Catal. A 248, 53 (2007)

    CAS  Google Scholar 

  9. A. Corma, V. GonzBlez-Alfaro, A.V. Orchillès, Appl. Catal. A 129, 203 (1995)

    Article  CAS  Google Scholar 

  10. J. Panpranot, U. Toophorm, P. Praserthdam, J. Porous Mater. 12, 293 (2005)

    Article  CAS  Google Scholar 

  11. J.E. Hazm, P. Caullet, J.L. Paillaud, M. Soulard, L. Delmotte, Microporous Mesoporous Mater. 43, 11 (2001)

    Article  CAS  Google Scholar 

  12. T. Inui, J.B. Kim, T. Takeguchi, Zeolites 17, 354 (1996)

    Article  CAS  Google Scholar 

  13. A. Godelitsas, D. Charistos, C. Tsipis, P. Misaelides, A. Filippidis, M. Schindler, Microporous Mesoporous Mater. 61, 69 (2003)

    Article  CAS  Google Scholar 

  14. S. Dzwigaj, M.J. Peltre, P. Massiani, A. Davidson, M. Che, T. Sen, S. Sivasanker, Chem. Commun. 1, 87–88 (1998)

    Google Scholar 

  15. A. Mihaylova, K. Hadjiivanov, S. Dzwigaj, M. Che, J. Phys. Chem. B 110, 19530 (2006)

    Article  CAS  Google Scholar 

  16. S. Dzwigaj, M. Che, J. Phys. Chem. B 110, 12490 (2006)

    Article  CAS  Google Scholar 

  17. J. Janas, T. Shishido, M. Che, S. Dzwigaj, Appl. Catal. B 89, 196 (2009)

    Article  CAS  Google Scholar 

  18. A. Lita, X. Ma, R.W. Meulenberg, T. van Buuren, A.E. Stiegman, Inorg. Chem. 47, 7302 (2008)

    Article  CAS  Google Scholar 

  19. X.G. Zhang, P. Liu, Y.J. Wu, Y. Yao, J. Wang, Catal. Lett. 137, 210 (2010)

    Article  CAS  Google Scholar 

  20. H.B. Du, M. Fang, Y.L. Liu, S.L. Qiu, W.Q. Pang, Zeolites 18, 334 (1997)

    Article  CAS  Google Scholar 

  21. S. Kallus, J. Patarin, P. Caullet, A.C. Faust, Microporous Mater. 10, 181 (1997)

    Article  CAS  Google Scholar 

  22. A. Corma, F.X.L. Xamena, C. Prestipino, M. Renz, S. Valencia, J. Phys. Chem. 113, 11306 (2009)

    CAS  Google Scholar 

  23. J.C. van der Waal, P.J. Kooyman, J.C. Jansen, H. van Bekkum, Microporous Mesoporous Mater. 25, 43 (1998)

    Article  Google Scholar 

  24. T. Tatsumi, N. Jappar, J. Phys. Chem. B 102, 7126 (1998)

    Article  CAS  Google Scholar 

  25. M. Mehdipourghazi, A. Moheb, H. Kazemian, Microporous Mesoporous Mater. 136, 18–24 (2010)

    Article  CAS  Google Scholar 

  26. J. Sanchez, A. McCormick, J. Phys. Chem. 96, 8973 (1992)

    Article  CAS  Google Scholar 

  27. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  28. K. Watanabe, M. Ogura, Microporous Mesoporous Mater. 114, 229 (2008)

    Article  CAS  Google Scholar 

  29. J. Gu, Y.J. Wu, J. Wang, Y.D. Lu, X.Q. Ren, J. Mater. Sci. 44, 3777 (2009)

    Article  CAS  Google Scholar 

  30. Y.J. Wu, J. Wang, P. Liu, W. Zhang, J. Gu, X.J. Wang, J. Am. Chem. Soc. 132, 17989 (2010)

    Article  CAS  Google Scholar 

  31. J. Gu, Y.J. Wu, Y.H. Jin, J. Wang, J Porous Mater. (2012). doi:10.1007/s10934-012-9569-y

  32. M.A. Camblor, A. Corma, J. Pérez-Pariente, Zeolites 13, 82 (1993)

    Article  CAS  Google Scholar 

  33. C. Yang, Q.H. Xu, C. Hu, Mater. Chem. Phys. 63, 55 (2000)

    Article  CAS  Google Scholar 

  34. H.Y. Wei, F. Wang, Z.D. Chen, Sci. China, Ser. B 48, 402 (2005)

    Article  CAS  Google Scholar 

  35. N. Hedin, G.J. DeMartin, W.J. Roth, K.G. Strohmaier, S.C. Reyes, Microporous Mesoporous Mater. 109, 327 (2008)

    Article  CAS  Google Scholar 

  36. M. Chatterjee, D. Bhattcharya, H. Hayashi, T. Ebina, Y. Onodera, T. Nagase, S. Sivasanker, T. Iwasaki, Microporous Mesoporous Mater. 20, 87 (1998)

    Article  CAS  Google Scholar 

  37. R. Kumar, A. Thangaraj, R.N. Bhat, P. Ratnasamy, Zeolites 10, 85 (1990)

    Article  CAS  Google Scholar 

  38. H.Y. He, Z. He, Stud. Surf. Sci. Catal. 170, 470 (2007)

    Article  Google Scholar 

  39. H.B. Du, M. Fang, Y.L. Liu, S.L. Qiu, W.Q. Pang, Zeolites l 8, 334 (1997)

    Article  Google Scholar 

  40. P. Kovacheva, N. Davidova, D. Shopov, Zeolites 13, 92 (1983)

    Article  Google Scholar 

  41. E.M.E. Malki, D. Werst, P.E. Doan, W.M.H. Sachtler, J. Phys. Chem. B 104, 5924 (2000)

    Article  Google Scholar 

  42. S. Velu, N. Shah, T.M. Jyothi, S. Sivasanker, Microporous Mesoporous Mater. 33, 61 (1999)

    Article  CAS  Google Scholar 

  43. S. Vetrivel, A. Pandurangan, Catal. Lett. 120, 71 (2008)

    Article  CAS  Google Scholar 

  44. J. Pérez-Ramírez, J.C. Groen, A. Brückner, M.S. Kumar, U. Bentrup, M.N. Debbagh, L.A. Villaescusa, J. Catal. 232, 318 (2005)

    Article  Google Scholar 

  45. J.C. Torres, D. Cardoso, Microporous Mesoporous Mater. 113, 204 (2008)

    Article  CAS  Google Scholar 

  46. S.P. Naik, J.C. Chen, A.S.T. Chiang, Microporous Mesoporous Mater. 54, 293 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China (Grant nos. 20976084, 21136005 and 21101094), Jiangsu Provincial Natural Science Foundation (SBK201123111), and PAPD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Cao, F., Gu, J. et al. Direct hydrothermal synthesis and characterization of framework-substituted Co(Mn)-Beta zeolites. J Porous Mater 20, 891–896 (2013). https://doi.org/10.1007/s10934-012-9666-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-012-9666-y

Keywords

Navigation