Skip to main content
Log in

Microstructure and Tribological Properties of Laser-Remelted Ni-Based WC Coatings Obtained by Plasma Spraying

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

Ni-based WC coatings were successfully fabricated on Ti6Al4V titanium alloy substrate by the air plasma spraying (APS) process. The as-sprayed coatings were remelted with a continuous wave CO2 laser. The coatings were characterized using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), an X-ray diffractometer (XRD), a Vickers microhardness tester, a ball-on-disc friction and wear tester, and a 3D measuring laser microscope. The results indicated that the laser-remelted coatings possessed a more homogeneous microstructure and lower porosity, were more dense, and bonded well with the substrate. The lamellar structure and microcracks of the as-sprayed coatings were eliminated after laser remelting. The average porosity markedly decreased to 1.3% from 9.7% of the as-sprayed coating. Many needle dendrites grew outward from the dissolution surface of the WC, while massive precipitates abundantly appeared around and away from the WC particles. The microhardness of the laser-remelted coating was enhanced to 884.7–1363.3 HV0.3, which was much higher than that of the as-sprayed coatings and nearly three times higher than that of the substrate. Under the same load, the wear volume of the substrate was nearly 13 times higher than that of the laser-remelted coating and five times higher than that of the as-sprayed coating. The wear mechanism of the laser-remelted coating and the as-sprayed coating was mainly abrasive wear; however, the wear mechanisms of the substrate were a combination of adhesive wear, micro-cutting, and delamination wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. N. Celik, Appl. Surf. Sci., 274, 334 (2013).

    Article  ADS  Google Scholar 

  2. W. J. Xu, X. Liu, J. L. Song, et al., Appl. Surf. Sci., 259, 616 (2012).

    Article  ADS  Google Scholar 

  3. Z. K. Chang, X. S. Wan, Z. L. Pei, et al., Surf. Coat. Technol., 205, 4690 (2011).

    Article  Google Scholar 

  4. F. Yildiz, A. F. Yetim, A. Alsaran, et al., Tribol. Int., 66, 307 (2013).

    Article  Google Scholar 

  5. Y. Wang, C. G. Li, W. Tian, et al., Appl. Surf. Sci., 255, 8603 (2009).

    Article  ADS  Google Scholar 

  6. V. Sáenz de Viteri, M. G. Barandika, U. Ruiz de Gopegui, et al., J. Inorg. Biochem., 117, 359 (2012).

    Article  Google Scholar 

  7. L. Ceschini, E. Lanzoni, C. Martini, et al., Wear, 264, 86 (2008).

    Article  Google Scholar 

  8. E. Bemporad, M. Sebastiani, M. H. Staia, et al., Surf. Coat. Technol., 203, 566 (2008).

    Article  Google Scholar 

  9. Midori Yoshikawa Pitanga Costa, M. O. H. Cioffi, M. L. R. Venditti, and H. J. C. Voorwald, Procedia Eng., 2, 1859 (2010).

  10. C. Martini and L. Ceschini, Tribol. Int., 44, 297 (2011).

    Article  Google Scholar 

  11. R. Sitek, J. Kaminski, J. Borysiuk, et al., Intermetallics, 36, 36 (2013).

    Article  Google Scholar 

  12. X. Li, L. Wang, X. M. Yu, et al., Mater. Sci. Eng., 33, 2987 (2013).

    Article  MathSciNet  Google Scholar 

  13. Y. Balcaen, N. Radutoiu, J. Alexis, et al., Surf. Coat. Technol., 206, 1684 (2011).

    Article  Google Scholar 

  14. H. Cimenoglua, M. Gunyuz, G. T. Kose, et al., Mater. Character., 62, 304 (2011).

    Article  Google Scholar 

  15. Y. Vangolu, A. Alsaran, and O. S. Yildirim, Wear, 271, 2322 (2011).

    Article  Google Scholar 

  16. M. I. Sarró, D. A. Moreno, C. Ranninger, et al., Surf. Coat. Technol., 201, 2807 (2006).

    Article  Google Scholar 

  17. X. C. Zhang, Z. D. Liu, J. S. Xu, et al., Surf. Coat. Technol., 228, S107 (2013).

    Article  Google Scholar 

  18. F. Yildiz, A. F. Yetim, A. Alsaran, et al., Surf. Coat. Technol., 202, 2471 (2008).

    Article  Google Scholar 

  19. R. M. Mahamood, E. T. Akinlabi, M. Shukla, et al., Mater. Des., 50, 656 (2013).

    Article  Google Scholar 

  20. J. Li, Z. S. Yu, and H. P. Wang, Thin Solid Films, 519, 4804 (2011).

    Article  ADS  Google Scholar 

  21. M. Das, V. K. Balla, D. Basu, et al., Scr. Mater., 66, 578 (2012).

    Article  Google Scholar 

  22. O. F. Ochonogor, C. Meacock, M. Abdulwahab, et al., Appl. Surf. Sci., 263, 591 (2012).

    Article  ADS  Google Scholar 

  23. K. M. Zhang, J. X. Zou, J. Li, et al., Trans. Nonferrous Met. Soc. China, 20, 2192 (2010).

    Article  Google Scholar 

  24. C. Cui, F. X. Ye, and G. R. Song, Surf. Coat. Technol., 206, 2388 (2012).

    Article  Google Scholar 

  25. N. Serres, F. Hlawkaa, S. Costil, et al., Appl. Surf. Sci., 257, 5132 (2011).

    Article  ADS  Google Scholar 

  26. P. Wu, C. Z. Zhou, and X. N. Tang, Surf. Coat. Technol., 166, 84 (2003).

    Article  Google Scholar 

  27. Y. Q. Ge, W. X Wang, X. Wang, et al., Appl. Surf. Sci., 273, 122 (2013).

    Article  ADS  Google Scholar 

  28. J. F. Cui, L. Qiang, B. Zhang, et al., Appl. Surf. Sci., 258, 5025 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafeng Guo.

Additional information

Manuscript submitted by the authors in English on July 10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Tian, Z., Huang, Y. et al. Microstructure and Tribological Properties of Laser-Remelted Ni-Based WC Coatings Obtained by Plasma Spraying. J Russ Laser Res 36, 48–58 (2015). https://doi.org/10.1007/s10946-015-9476-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-015-9476-1

Keywords

Navigation