Skip to main content
Log in

Weak Chaos with Cold Atoms in a 2D Optical Lattice with Orthogonal Polarizations of Laser Beams

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We study theoretically coherent dynamics of cold atoms in the near-resonant 2D optical lattice with orthogonal polarizations, taking into account a coupling between the atomic internal (electronic) and external (translational) degrees of freedom. We show that in the semiclassical approximation this dynamics may be regular or chaotic in dependence on the values of the detuning between the electric-dipole transition and the laser field frequencies. Chaos manifests itself both in the Rabi oscillations and in the translational motion at comparatively small absolute values of the detuning. The center-of-mass motion in the chaotic regime resembles the random walk of atoms in a 2D lattice which is an absolutely rigid one. Chaos is quantified by the values of the maximal Lyapunov exponent and is shown to be weaker as compared with the case of cold atoms in a 1D lattice. In fact, chaos appears at the time moments when the atom crosses 1D or 2D nodes of the lattice potential when its induced electric dipole moment changes suddenly in a random-like manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Grynberg and C. Robilliard, Phys. Rep., 355, 335 (2001).

    Article  ADS  Google Scholar 

  2. M. Greiner and S. Folling, Nature, 435, 736 (2008).

    Article  ADS  Google Scholar 

  3. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Action of Light on Atoms, World Scientific, Singapore (1990).

    Book  Google Scholar 

  4. V. Letokhov, Laser Control of Atoms and Molecules, Oxford University Press, New York (2007).

    Google Scholar 

  5. G. A. Askaryan, Sov. Phys. JETP, 15, 1088 (1962).

    Google Scholar 

  6. V. S. Letokhov, JETP Lett, 7, 272 (1968).

    ADS  Google Scholar 

  7. S. Chu, Rev. Mod. Phys., 73, 685 (1998).

    Article  ADS  Google Scholar 

  8. C. Cohen-Tannoudji, Rev. Mod. Phys., 73, 707 (1998).

    Article  ADS  Google Scholar 

  9. W. D. Phillips, Rev. Mod. Phys., 73, 721 (1998).

    Article  ADS  Google Scholar 

  10. M. G. Raizen, Adv. At. Mol. Opt. Phys., 41, 43 (1999).

    Article  ADS  Google Scholar 

  11. W. K. Hensinger, N. R. Heckenberg, G.J. Milburn, and H. Rubinsztein-Dunlop, J. Opt. B: Quantum Semiclass. Opt., 5, 83 (2003).

    Article  ADS  Google Scholar 

  12. M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, Phys. Rev. Lett., 94, 174103 (2005).

    Article  ADS  Google Scholar 

  13. R. Graham, M. Schlautmann, and P. Zoller, Phys. Rev. A, 45, R19 (1992).

    Article  ADS  Google Scholar 

  14. S. V. Prants, L. E. Kon’kov, and I. L. Kirilyuk, Phys. Rev. E, 60, 335 (1999)

    Article  ADS  Google Scholar 

  15. S. V. Prants, Phys. Scr., 92, 044002 (2017).

    Article  ADS  Google Scholar 

  16. D. Mello, D. Schaffner, J. Werkmann, et al., Phys. Rev. Lett., 122, 203601 (2019).

    Article  ADS  Google Scholar 

  17. S. V. Prants and L. S. Yacoupova, J. Mod. Opt., 39, 961 (1992).

    Article  ADS  Google Scholar 

  18. S. V. Prants, Zh. Éksp. Teor. Fiz., 136, 872 (1990).

    Google Scholar 

  19. L. E. Kon’kov and S. V. Prants, JETP Lett., 65, 833 (1997).

    Article  ADS  Google Scholar 

  20. S. V. Prants and L. E. Kon’kov, Phys. Lett. A, 225, 33 (1997).

    Article  ADS  Google Scholar 

  21. S. V. Prants and L. E. Kon’kov, JETP Lett., 73, 1801 (2001).

    Article  Google Scholar 

  22. V. Yu. Argonov and S. V. Prants, J. Exp. Theor. Phys, 96, 832 (2003)..

    Article  ADS  Google Scholar 

  23. S. V. Prants, M. Yu. Uleysky, and V. Yu. Argonov, Phys. Rev. A, 73, 023807 (2006).

    Article  ADS  Google Scholar 

  24. V. Yu. Argonov and S. V. Prants, J. Russ. Laser Res., 27, 360 (2006).

    Article  Google Scholar 

  25. S. V. Prants, Europhys. Lett., 99, 20009 (2012).

    Article  ADS  Google Scholar 

  26. V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 75, 063428 (2007).

    Article  ADS  Google Scholar 

  27. V. Yu. Argonov and S. V. Prants, Phys. Rev. A, 78, 043413 (2008).

    Article  ADS  Google Scholar 

  28. V. O. Vitkovsky and S. V. Prants, Opt. Spectrosc., 114, 52 (2013).

    Article  ADS  Google Scholar 

  29. S. V. Prants, JETP Lett., 104, 749 (2016).

    Article  ADS  Google Scholar 

  30. D. Hennequin and D. Verkerk, Eur. Phys. J. D, 57, 95 (2010).

    Article  ADS  Google Scholar 

  31. E. Horsley, S. Koppell, and L. Reichl, Phys. Rev. E, 89, 012917 (2014).

    Article  ADS  Google Scholar 

  32. Y. Boretz and L. E. Reichl, Phys. Rev. E, 91, 042901 (2015).

    Article  ADS  Google Scholar 

  33. Max D. Porter and L. E. Reichl, Phys. Rev. E, 93, 012204 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  34. L. E. Kon’kov and S. V. Prants, J. Math. Phys., 37, 1204 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Prants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prants, S.V. Weak Chaos with Cold Atoms in a 2D Optical Lattice with Orthogonal Polarizations of Laser Beams. J Russ Laser Res 40, 213–220 (2019). https://doi.org/10.1007/s10946-019-09792-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-019-09792-6

Keywords

Navigation