Skip to main content
Log in

Continuous-Variable Entanglement Adjustable by Phase Fluctuation and Classical Pumping Field in a Correlated Emission Laser Seeded with Squeezed Light

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

We present the influence of phase fluctuations on the entanglement and intensity of the radiation produced by a correlated-emission laser. The three-level atoms are initially prepared in a partial coherent superposition of the ground and exited states, and the driven radiation field incoming via the input mirror induces the atomic coherence that leads to the entanglement in the quantum system. The laser cavity also contains a nondegenerate parametric amplifier and is seeded by a two-mode squeezed light. The entanglement is analyzed by applying the Duan–Giedke–Cirac–Zoller (DGCZ) and logarithmic negativity inseparability criteria for a continuous variable system. We find that the phase fluctuation remarkably reduces the amount of entanglement in the weak driving field. On the other hand, the driven field completely overcomes the influence of phase fluctuations in the strong driving field, so that the entanglement remains in its highest degree (97%) in this regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Lu, F. X. Zhao, and J. Bergou, Phys. Rev. A, 39, 5189 (1989).

    Article  ADS  Google Scholar 

  2. J. Anwar and M. S. Zubairy, Phys. Rev. A, 49, 481 (1994).

    Article  ADS  Google Scholar 

  3. N. A. Ansari, J. G. Banacloche, and M. S. Zubairy, Phys. Rev. A, 41, 5179 (1990).

    Article  ADS  Google Scholar 

  4. E. Alebachew, Opt. Commun., 280, 133 (2007).

    Article  ADS  Google Scholar 

  5. Y. H. Ma and E. Wu, JETP Lett., 93, 233 (2011).

    Article  ADS  Google Scholar 

  6. S. Ullah, H. S. Qureshi, G. Tiaz, et al., Appl. Opt., 58, 197 (2019).

    Article  ADS  Google Scholar 

  7. W. KeQuan and F. QiuBo, Sci. Chin. Ser. G: Phys. Mech. Astron., 52, 1307 (2009).

    Article  Google Scholar 

  8. R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, Phys. Rev. A, 83, 054304 (2011).

    Article  ADS  Google Scholar 

  9. I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, Phys. Rev. Lett., 114, 060403 (2015).

    Article  ADS  Google Scholar 

  10. A. Einstein, B. Podolsky, and R. Rosen, Phys. Rev., 47, 777 (1935).

    Article  ADS  Google Scholar 

  11. S. Bell, J. Phys., 1, 195 (1964).

    Google Scholar 

  12. K. Heshami, D. G. England, P. C. Humphreys, et al., J. Mod. Opt., 63, 2005 (2016).

    Article  ADS  Google Scholar 

  13. C. H. Bennett and D. P. DiVincenzo, Nature, 404, 247 (2000).

    Article  ADS  Google Scholar 

  14. S. Barzanjeh, S. Pirandola, and C. Weedbrook, Phys. Rev. A, 88, 042331 (2013).

    Article  ADS  Google Scholar 

  15. J. G. Ren, P. Xu, H. L. Yong, et al., Nature, 549, 70 (2017).

    Article  ADS  Google Scholar 

  16. C. L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys., 89, 035002 (2017).

    Article  ADS  Google Scholar 

  17. W. Zhong, G. Cheng, and X. Hu, Laser Phys. Lett., 15, 065204 (2018).

    Article  ADS  Google Scholar 

  18. S. Tesfa, Opt. Commun., 285, 830 (2012).

    Article  ADS  Google Scholar 

  19. M. Reboiro, O. Civitarese, and D. Tielas, J. Russ. Laser Res., 35, 110 (2014).

    Article  Google Scholar 

  20. H. Xiong, M. Scully, and M. Zubairy, Phys. Rev. Lett., 94, 023601 (2005).

    Article  ADS  Google Scholar 

  21. T. Abebe, Ukr. J. Phys., 63, 733 (2018).

    Article  Google Scholar 

  22. S. Tesfa, J. Phys. B: At. Mol. Opt. Phys., 41, 055503 (2008).

    Article  ADS  Google Scholar 

  23. C. Gashu, E. Mosisa, and T. Abebe, Adv. Math. Phys., 2020, 14 (2020).

    Article  Google Scholar 

  24. T. Abebe, N. Gemechu, C. Gashu, et al., Int. J. Opt., 2020, 11 (2020).

    Article  Google Scholar 

  25. T. Abebe, N. Gemechu, K. Shogile, et al., Rom. J. Phys., 65, 107 (2020).

    Google Scholar 

  26. C. Gashu and T. Abebe, Phys. Scr., 95, 075105 (2020).

    Article  ADS  Google Scholar 

  27. C. G. Feyisa, Braz. J. Phys., 50, 379 (2020).

    Article  ADS  Google Scholar 

  28. S. Tesfa, Phys. Rev. A, 84, 023809 (2011).

    Article  ADS  Google Scholar 

  29. E. A. Sete, Phys. Rev. A, 84, 063808 (2011).

    Article  ADS  Google Scholar 

  30. M. Majeed and M. S. Zubairy, Phys. Rev. A, 44, 4688 (1991).

    Article  ADS  Google Scholar 

  31. C. M. Caves, Phys. Rev. D, 26, 1817 (1982).

    Article  ADS  Google Scholar 

  32. T. Abebe and C. G. Feyisa, Braz. J. Phys., 50, 495 (2020).

    Article  ADS  Google Scholar 

  33. S. M. Barnett and P. M. Badmore, Methods in Theoretical Quantum Optics, Oxford University Press, New York (1997).

    Google Scholar 

  34. S. Tesfa, Phys. Rev. A, 83, 023809 (2011).

    Article  ADS  Google Scholar 

  35. K. Fesseha, Fundamental of Quantum Optics, Lulu, North Carolina (2008).

    MATH  Google Scholar 

  36. W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York (1973).

    MATH  Google Scholar 

  37. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press (1997).

  38. L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett., 84, 2722 (2000).

    Article  ADS  Google Scholar 

  39. O. Jeff, Quantum Optics for Experimentalists, World Scientific, USA (2017).

    Google Scholar 

  40. G. Vidal and R. F. Wener, Phys. Rev. A, 65, 032314 (2002).

    Article  ADS  Google Scholar 

  41. G. Adesso, A. Serafini, and F. Illuminati, Phys. Rev. A, 70, 022318 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimdessa Gashu Feyisa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feyisa, C.G., Abebe, T., Gemechu, N. et al. Continuous-Variable Entanglement Adjustable by Phase Fluctuation and Classical Pumping Field in a Correlated Emission Laser Seeded with Squeezed Light. J Russ Laser Res 41, 563–575 (2020). https://doi.org/10.1007/s10946-020-09911-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10946-020-09911-8

Keywords

Navigation