Skip to main content
Log in

Effects of Bi Substitution on Magnetic and Transport Properties of La0.7−x Bi x Ag0.3MnO3 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Colossal magnetoresistance, CMR ceramics with starting composition of La0.7−x Bi x Ag0.3MnO3 (x=0–0.2) were synthesized using the conventional solid-state synthesis method to investigate the effects of Bi and Ag on their magnetic and electrical transport properties as well as their magnetoresistance behavior. Magnetic susceptibility measurements showed that the La0.7−x Bi x Ag0.3MnO3 samples with x=0, 0.10 and 0.15 exhibit single paramagnetic to ferromagnetic transition at Curie temperature, T C , which was observed to decrease from 289.5 K (x=0) to 186.5 K (x=0.15) while the x=0.2 sample showed two magnetic transitions at T C1 (160.5 K) and T C2 (214.0 K). Electrical resistivity measurements showed metal–insulator transition behavior for all samples. Bi substitution caused resistivity to increase while metal–insulator transition temperature, T MI shifted to lower temperature from 252.7 K (x=0) to 136.3 K (x=0.20). The metallic region of the ρ(0,T) curve below T MI for all samples was well fitted to the equation ρ=ρ o +ρ 2 T 2+ρ 4.5 T 4.5 indicating a combination of grain or domain boundary, electron–electron and electron–magnon scattering mechanism while the insulator region was governed by the Variable Range Hopping (VRH) model at T MI<T<θ D /2 and adiabatic small polaronic model (SPH) at T>θ D /2. The increase of hopping activation energy, E a for the latter is suggested to be due to possible hybridization between Bi 6s2 lone pair and O orbital. Bi3+ substitution was also observed to enhance intrinsic MR at the vicinity of T MI due to increase in DE interaction when external magnetic field was applied. On the other hand, the substitution also caused reduction of extrinsic MR effect at low temperatures, which is suggested to be due to reduction of Mn spin disorder at grain boundaries as a result of the presence of small amount of Ag secondary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Phys. Rev. Lett. 71, 1990 (1993)

    Article  Google Scholar 

  2. Chahara, K., Ohno, T., Kasai, M., Kosono, Y.: Appl. Phys. Lett. 63, 1990 (1993)

    Article  ADS  Google Scholar 

  3. Goodenough, J.B.: Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

  4. Yamada, Y., Hino, O., Nohdo, S., Kanao, R., Inami, T., Katano, S.: Phys. Rev. Lett. 77, 904 (1996)

    Article  ADS  Google Scholar 

  5. Jin, S., Teifel, T.H., Cormack, M., Fastnacth, R.A., Ramesh, R., Chen, L.H.: Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  6. Zener, C.: Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  7. Samantaray, B., Srivastava, S.K., Ravi, S., Dhiman, I., Das, A.: J. Supercond. Nov. Magn. 24, 1933–1937 (2011)

    Article  Google Scholar 

  8. Millis, A.J., Littlewood, P.B., Shraiman, B.I.: Phys. Rev. Lett. 74, 5144 (1995)

    Article  ADS  Google Scholar 

  9. Xia, Z.C., Liu, G., Dong, B., Chen, L., Liu, D.W., Fang, C.H., Doyanada, D., Liu, L., Liu, S., Tang, C.Q., Yuan, S.L.: J. Magn. Magn. Mater. 292, 260–265 (2005)

    Article  ADS  Google Scholar 

  10. Xia, Z.C., Xiao, L.X., Fang, C.H., Liu, G., Dong, B., Liu, D.W., Chen, L., Liu, L., Liu, S., Doyananda, D., Tang, C.Q., Yuan, S.L.: J. Magn. Magn. Mater. 297, 1 (2006)

    Article  ADS  Google Scholar 

  11. Walsh, M.C., Foldeaki, M., Giguere, A., Bahadur, D., Mandal, S.K., Dunlap, R.A.: Physica B 253, 103–110 (1998)

    Article  ADS  Google Scholar 

  12. Atalay, S., Kolat, V.S., Gencer, H., Adiguzel, H.I.: J. Magn. Magn. Mater. 305, 452–456 (2006)

    Article  ADS  Google Scholar 

  13. Cheng, Z.X., Silver, T.M., Li, A.H., Wang, X.L., Kimura, H.: J. Magn. Magn. Mater. 283, 143–149 (2004)

    Article  ADS  Google Scholar 

  14. Hao, J.H., Li, Z.S., Wong, H.K.: Mater. Sci. Eng. B 83, 70–73 (2001)

    Article  Google Scholar 

  15. Wu, J., Zhang, S.-Y.: J. Magn. Magn. Mater. 264, 102–108 (2003)

    Article  ADS  Google Scholar 

  16. Chen, H.Z., Young, S.L., Chen, Y.C., Horng, L., Shi, J.B.: Physica B 329–333, 729–730 (2003)

    Article  Google Scholar 

  17. Li, H.-b., Feng, M., Li, N., Liu, M., Gou, X.-c.: J. Electroceram. 28, 10–14 (2011)

    Article  Google Scholar 

  18. Wang, Z., Ni, G., Che, Y.: J. Supercond. Nov. Magn. 25(2), 533–539 (2011)

    Article  Google Scholar 

  19. Zhao, Y.D., Park, J., Jung, R.-J., Noh, H.-J., Oh, S.-J.: J. Magn. Magn. Mater. 280, 404 (2004)

    Article  ADS  Google Scholar 

  20. Lalitha, G., Venugopal Reddy, P.: J. Alloys Compd. 494, 476 (2010)

    Article  Google Scholar 

  21. Ye, S.L., Song, W.H., Dai, J.M., Wang, K.Y., Wang, S.G., Zhang, C.L., Du, J.J., Sun, Y.P., Fang, J.: J. Magn. Magn. Mater. 248, 26 (2002)

    Article  ADS  Google Scholar 

  22. Pi, L., Herviu, M., Maignan, A., Martin, C., Raveau, B.: Solid State Commun. 126, 229 (2003)

    Article  ADS  Google Scholar 

  23. Manoranjan Kar, Ravi, S.: Mater. Sci. Eng. B 110, 46–51 (2004)

    Article  Google Scholar 

  24. Ravi, S., Manoranjan Kar: Physica B 348, 169–176 (2004)

    Article  ADS  Google Scholar 

  25. Manjusha Battabyal, Dey, T.K.: Solid State Commun. 131, 337–342 (2004)

    Article  Google Scholar 

  26. Battabyal, M., Dey, T.K.: J. Phys. Chem. Solids 65, 1895–1900 (2004)

    Article  ADS  Google Scholar 

  27. Manjusha Battabyal, Dey, T.K.: Physica B 367, 40–47 (2005)

    Article  ADS  Google Scholar 

  28. Kalyana Lakhsmi, Y., Venugopal Reddy, P.: J. Magn. Magn. Mater. 321, 1240–1245 (2009)

    Article  ADS  Google Scholar 

  29. Ibrahim, N., Yahya, A.K., Rajput, S.S., Keshri, S., Talari, M.K.: J. Magn. Magn. Mater. 323, 2179–2185 (2011)

    Article  ADS  Google Scholar 

  30. Ibrahim, N., Yahya, A.K.: Mater. Res. Innov. 15, 221–224 (2011)

    Article  Google Scholar 

  31. Shannon, R.D.: Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  32. Shannon, R.D., Prewitt, C.T.: Acta Crystallogr. Sect. B 25, 925 (1969)

    Article  Google Scholar 

  33. Walsh, M.C., Foldeaki, M., Giguere, A., Bahadur, D., Mandal, S.K., Dunlap, R.A.: Physica B 253, 103–110 (1998)

    Article  ADS  Google Scholar 

  34. Sun, J.R., Gao, J., Fei, Y., Li, R.W., Shen, B.G.: Phys. Rev. B 67, 144414 (2003)

    Article  ADS  Google Scholar 

  35. Anderson, P.W., Hasegawa, H.: Phys. Rev. 100, 675 (1955)

    Article  ADS  Google Scholar 

  36. Soma Das, Dey, T.K.: Bull. Mater. Sci. 29, 633 (2009)

    Google Scholar 

  37. Kalyana Lakhsmi, Y., Venkataiah, G., Vithal, M., Venugopal Reddy, P.: Physica B 403, 3059 (2008)

    Article  ADS  Google Scholar 

  38. Srivastava, S.K., Manoranjan Kar, Ravi, S.: Mater. Sci. Eng. B 147, 84–89 (2008)

    Article  Google Scholar 

  39. Venkataiah, G., Prasad, V., Venugopal Reddy, P.: J. Alloys Compd. 429, 1 (2007)

    Article  Google Scholar 

  40. Venkataiah, G., Venugopal Reddy, P.: J. Magn. Magn. Mater. 285, 343 (2005)

    Article  ADS  Google Scholar 

  41. Venkataiah, G., Krishna, D.C., Vithal, M., Rao, S.S., Bhat, S.V., Prasad, V., Subramanyam, S.V., Venugopal Reddy, P.: Physica B 357, 370 (2005)

    Article  ADS  Google Scholar 

  42. Worledge, D.C., Snyder, G.J., Beasley, M.R., Geballe, T.H., Hiskes, R., DiCarolis, S.: J. Appl. Phys. 80, 5158 (1996)

    Article  ADS  Google Scholar 

  43. Banerjee, A., Pal, S., Chaudhuri, B.K.: J. Chem. Phys. 115, 1550 (2001)

    Article  ADS  Google Scholar 

  44. Fontcuberta, J., et al.: Phys. Rev. Lett. 76, 1122 (1996)

    Article  ADS  Google Scholar 

  45. Emin, D., Holstein, T.: Ann. Phys. 53, 439 (1969)

    Article  ADS  Google Scholar 

  46. Mott, N.F., et al.: Electronic Process in Nanocrystalline Material. Clarendon, Oxford (1971)

    Google Scholar 

  47. Garcia-Munoz, J.L., Frontera, C., Aranda, M.A.G., Llobet, A., Ritter, C.: Phys. Rev. B 63, 064415 (2001)

    Article  ADS  Google Scholar 

  48. Krishna, D.C., Venugopal Reddy, P.: J. Alloys Compd. 479, 661 (2009)

    Article  Google Scholar 

  49. Mazaheri, M., Akharan, M.: Physica B 405, 72 (2010)

    Article  ADS  Google Scholar 

  50. Zhao, T.S., Li, B.H., Han, H.: J. Magn. Magn. Mater. 320, 924 (2008)

    Article  Google Scholar 

  51. Siwach, P.K., Prasad, R., Gaur, A., Singh, H.K., Varma, G.D., Srivastava, O.N.: J. Alloys Compd. 443, 26–31 (2007)

    Article  Google Scholar 

  52. Rana, D.S., Mavani, K.R., Thaker, C.M., Kuberkar, D.G., Kundaliya, D.C., Malik, S.K.: J. Magn. Magn. Mater. 271, 215 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Yahya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghani, M.A., Mohamed, Z. & Yahya, A.K. Effects of Bi Substitution on Magnetic and Transport Properties of La0.7−x Bi x Ag0.3MnO3 Ceramics. J Supercond Nov Magn 25, 2395–2402 (2012). https://doi.org/10.1007/s10948-012-1617-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1617-y

Keywords

Navigation