Skip to main content
Log in

Hydrothermal Synthesis and Characterization of CoFe2O4 Nanoparticles and Nanorods

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper presents a low temperature (130 and 160 °C) synthesis route to prepare the spinel phase CoFe2O4 nanoparticles and nanorods. A one-dimensional (1-D) structure of Co-ferrite was successfully synthesized using Cetyl Trimethyl Ammonium Bromide (CTAB) as a surfactant at temperature 160 °C. Structural, electrical, and magnetic measurements have been performed using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), and the Vibrating Sample Magnetometer (VSM). XRD patterns show a pure spinel (fcc) structure, showing a complete phase formation at a low temperature of 160 °C, without any subsequent sintering. Average crystallite sizes have been calculated by Sherrer’s and Williamson-Hall methods. As prepared CoFe2O4 nanorods exhibited a uniform shape of diameter 60–80 nm and 600–900 nm in length. The FTIR spectrum for Co-ferrite nanorods shows two intrinsic lattice absorption bands for tetrahedral and octahedral sublattices. DC electrical resistivity of CoFe2O4 nanorods is high up to ∼108 (Ω-cm), as compared to CoFe2O4 nanoparticles (∼107 Ω-cm) at 373 K. Dielectric parameters were measured using a LCR meter, in the frequency range of 1 kHz to 5 MHz. The real and imaginary part of the dielectric constant (ε′ and ε″) and dielectric loss tangent (tanδ) reduces for CoFe2O4 nanorods in comparison to nanoparticles, and has a value of 13.6 and 0.0416, respectively. Magnetic properties were characterized by VSM under a field of 10 kOe and showed that the 1-D structure reduces the magnetization of nanocrystalline CoFe2O4 from 65 emu/gm to 54 emu/gm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nlebedim, I.C., Snyder, J.E., Moses, A.J., Jiles, D.C.: J. Magn. Magn. Mater. 322, 3938–3942 (2010)

    Article  ADS  Google Scholar 

  2. Zhigang, J., Daping, R., Rongsun, Z.: Mater. Lett. 66, 128–131 (2012)

    Article  Google Scholar 

  3. Gunjakar, J.L., More, A.M., Gurav, K.V., Lokhande, C.D.: Appl. Surf. Sci. 254, 5844–5848 (2008)

    Article  ADS  Google Scholar 

  4. Goha, S.C., Chiaa, C.H., Zakariaa, S., Yusoffa, M., Hawa, C.Y., Ahmadia, Sh., Huangb, N.M., Lim, H.N.: Mater. Chem. Phys. 120, 31–35 (2010)

    Article  Google Scholar 

  5. Sankaranarayana, V.K., Sreekumar, C.J.: Curr. Appl. Phys. 3, 205–208 (2003)

    Article  Google Scholar 

  6. Suginoto, M.: J. Am. Ceram. Soc. 82, 269 (1999)

    Article  Google Scholar 

  7. Bate, G.: J. Magn. Magn. Mater. 100, 413 (1991)

    Article  ADS  Google Scholar 

  8. Pileni, M.P.: Adv. Funct. Mater. 11, 323 (2001)

    Article  Google Scholar 

  9. Xu, Y., Wei, J., Yao, J., Fu, J., Xue, D.: Mater. Lett. 62, 1403–1415 (2008)

    Article  Google Scholar 

  10. Zhang, L.Y., Xue, D.S., Xu, X.F., Gui, A.B.: J. Magn. Magn. Mater. 294, 10 (2005)

    Article  ADS  Google Scholar 

  11. Wang, Z., Liu, X., Lv, M., Chai, P., Liu, Y., Zhou, X.: J. Phys. Chem. C 112, 511–517 (2008)

    Google Scholar 

  12. Cai, W., Wan, J.Q.: J. Colloid Interface Sci. 305, 366–370 (2007)

    Article  Google Scholar 

  13. Young, W.J., Jae, H.P., Hong, R.J., Sung, J.C., Wan, J.L.: Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 147, 7–12 (2008)

    Google Scholar 

  14. Ji, G.B., Tang, S.L., Ren, S.K., Zhang, F.M., Gu, B.X., Gu, Y.W.: J. Cryst. Growth 270, 156 (2004)

    Article  ADS  Google Scholar 

  15. Hiti, M.El., Abdeen, A.: Mater. Sci. Technol. 14, 417 (1998)

    Article  Google Scholar 

  16. Gul, I.H., Maqsood, A., Naeem, A., Naeem, A.M.: J. Alloys Compd. 507, 201 (2010)

    Article  Google Scholar 

  17. Byrappa, K., Adschiri, T.: Prog. Cryst. Growth Charact. Mater. 53, 117–166 (2007)

    Article  Google Scholar 

  18. Yüksel, K., Furkan, A., Muhammed, T., Resul, Y., Mustafa, Ö.: Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  19. Baykal, A., et al.: J. Alloys Compd. 464, 514–518 (2008)

    Article  Google Scholar 

  20. Shen, X., et al.: Trans. Nonferr. Met. Soc. China 19, 1588–1592 (2009)

    Article  Google Scholar 

  21. Elkestawy, M.A., Abdel Kader, S., Amer, M.A.: J. Phys. B, At. Mol. Phys. 405, 619–624 (2010)

    Google Scholar 

  22. Suryanarayan, C., Grant, N.G.: X-ray Diffraction: A Practical Approach. Plenum, New York (1998)

    Google Scholar 

  23. Xiao, S.H., Jiang, W.F., Li, L.Y., Li, X.J.: Mater. Chem. Phys. 106, 82 (2007)

    Article  Google Scholar 

  24. Qu, Y.Q., Yang, H.B., Yang, N., Fan, Y.Z., Zhu, H.Y., Zou, G.T.: Mater. Lett. 60, 548 (2006)

    Google Scholar 

  25. Gul, I.H., Maqsood, A., Abbasi, A.Z., Amin, F.M., Rehman, M.A.: J. Magn. Magn. Mater. 311, 494 (2007)

    Article  ADS  Google Scholar 

  26. El-Sayed, A.M.: Ceram. Int. 28, 651 (2002)

    Article  Google Scholar 

  27. Ahlawat, A., et al.: J. Magn. Magn. Mater. 323, 2049–2054 (2011)

    Article  ADS  Google Scholar 

  28. Batoo, K.M., Kumar, M.S., Lee, C.G., Alimuddin: J. Alloys Compd. 480, 596 (2009)

    Article  Google Scholar 

  29. Khandekara, M.S., Kambale, R.C., Patil, J.Y., Kolekar, Y.D., Suryavanshia, S.S.: J. Alloys Compd. 509, 1861–1865 (2011)

    Article  Google Scholar 

  30. Verma, A., Thakur, O.P., Prakash, C., Goel, T.C., Mendiratta, R.G.: Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 116, 1 (2005)

    Google Scholar 

  31. Lee, K.H., Cho, D.H., Jeung, S.S.: J. Mater. Sci. Lett. 16, 83 (1997)

    Article  Google Scholar 

  32. Koop’s, C.: Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  33. Mohamed, R.M., Rashad, M.M., Haraz, F.A., Sigmund, W.: J. Magn. Magn. Mater. 322, 2058 (2010)

    Article  ADS  Google Scholar 

  34. Iwachi, K.: Jpn. J. Appl. Phys. 10, 1520 (1971)

    Article  ADS  Google Scholar 

  35. Chourashiya, M.G., Patil, J.Y., Pawar, S.H., Jadhav, L.D.: Mater. Chem. Phys. 109, 39 (2008)

    Article  Google Scholar 

  36. Jia, Z., et al.: Mater. Lett. 66, 128–131 (2012)

    Article  Google Scholar 

  37. Xiangyu, H., Jing, F., Xianodong, X., Milin, Z.: J. Alloys Compd. 491, 258–263 (2010)

    Article  Google Scholar 

  38. El-Okr, M.M., Salem, M.A., Salim, M.S., El-Okr, R.M., Ashoush, M., Talaat, M.: J. Magn. Magn. Mater. 323, 920–926 (2011)

    Article  ADS  Google Scholar 

  39. Zhen, L., He, K., Xu, C.Y., Shao, W.Z.: J. Magn. Magn. Mater. 320, 2672–2675 (2008)

    Article  Google Scholar 

  40. Lawrence, K., Manoranjan, K.: J. Magn. Magn. Mater. 323, 2042–2048 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge TWAS, Italy, the Higher Education Commission (HEC) Islamabad, Pakistan, and the Pakistan Science Foundation (PSF) Project. No. 147, for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Gul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pervaiz, E., Gul, I.H. & Anwar, H. Hydrothermal Synthesis and Characterization of CoFe2O4 Nanoparticles and Nanorods. J Supercond Nov Magn 26, 415–424 (2013). https://doi.org/10.1007/s10948-012-1749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1749-0

Keywords

Navigation