Skip to main content
Log in

Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

BiFeO3 nanoparticles were prepared via a soft chemical method using citric acid and tartaric acid routes followed by calcination at low temperature. Structural characterization showed remarkably different conditions for pure phase formation from both routes. The tartaric acid route was effective in obtaining pure phase BiFeO3 nanoparticles while citric acid route required leaching in dilute nitric acid to remove impurity phases. Further optical, magnetic, and dielectric characterizations of pure phase BiFeO3 nanoparticles obtained by tartaric acid route were done. X-ray diffraction and Raman spectroscopy confirmed the distorted rhombohedral structure of BiFeO3 nanoparticles. The average crystallite size of BiFeO3 nanoparticles was found to vary in the range 30–50 nm. Fourier Transformed Infrared spectra of BiFeO3 samples calcined at different temperatures were studied in order to analyze various bond formations in the samples. UV-Visible diffuse absorption showed that BFO nanoparticles strongly absorb visible light in the wavelength region of 400–580 nm with absorption cut-off wavelength of 571 nm. The band gap of BiFeO3 nanoparticles was found to be 2.17 eV as calculated from absorption coefficient spectra. Magnetic measurement showed saturated hysteresis loop indicating ferromagnetic behavior of BiFeO3 nanoparticles at room temperature. Temperature dependent dielectric constant showed anomaly well below the antiferromagnetic Néel temperature indicating decrease in antiferromagnetic Néel temperature of BiFeO3 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fiebig, M., Lottermoser, Th., Frohlich, D., Goltsev, A.V., Pisarev, R.V.: Nature 419, 818 (2002)

    Article  ADS  Google Scholar 

  2. Hill, N.A.: J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  3. Fischer, P., Polomska, M., Sosnowska, I., Szymanskig, M.: J. Phys. C 13, 1931 (1980)

    ADS  Google Scholar 

  4. Wang, Y.P., Zhou, L., Zhang, M.F., Chen, X.Y., Liu, J.M., Liu, Z.G.: Appl. Phys. Lett. 84, 1731 (2004)

    Article  ADS  Google Scholar 

  5. Selbach, S.M., Tybell, T., Einarsrud, MA, Grande, T.: Chem. Mater. 19, 6478 (2007)

    Article  Google Scholar 

  6. Dai, H., Li, T., Xue, R., Chen, Z., Xue, Y.: J. Supercond. Nov. Magn. 25, 109 (2012)

    Article  Google Scholar 

  7. Tang, Y.H., Han, T.C., Liu, H.L., Lin, J.G.: J. Supercond. Nov. Magn. (2011). doi:10.1007/s10948-011-1257-7

    Google Scholar 

  8. Mazumder, R., Ghosh, S., Mondal, P., Bhattacharya, D., Dasgupta, S., Das, N., Sen, A., Tyagi, A.K., Sivakumar, M., Takami, T., Ikuta, H.: J. Appl. Phys. 100, 033908 (2006)

    Article  ADS  Google Scholar 

  9. Takahashi, K., Kida, N., Tonouchi, M.: Phys. Rev. Lett. 96, 117402 (2006)

    Article  ADS  Google Scholar 

  10. Gao, F., Chen, X., Yin, K., Dong, S., Ren, Z., Yuan, F., Yu, T., Zou, Z., Liu, J.M.: Adv. Mater. 19, 2889 (2007)

    Article  Google Scholar 

  11. Gao, F., Yuan, Y., Wang, K.F., Chen, X.Y., Chen, F., Liu, J.M.: Appl. Phys. Lett. 89, 102506 (2006)

    Article  ADS  Google Scholar 

  12. Fukumura, H., Matsui, S., Harima, H., Takahashi, T., Itoh, T., Kisoda, K., Tamada, M., Noguchi, Y., Miyayama, M.: J. Phys. Condens. Matter 19, 365224 (2007)

    Article  Google Scholar 

  13. Singh, M.K., Jang, H.M., Ryu, S., Jo, M.H.: Appl. Phys. Lett. 88, 42907 (2006)

    Article  Google Scholar 

  14. Yang, H., Xian, T., Wei, Z.Q., Dai, J.F., Jiang, J.L., Feng, W.J.: J. Sol-Gel Sci. Technol. 58, 238 (2011)

    Article  Google Scholar 

  15. Bhushan, B., Basumallick, A., Bandopadhyay, S.K., Vasanthacharya, N.Y., Das, D.: J. Phys. D, Appl. Phys. 42, 065004 (2009)

    Article  ADS  Google Scholar 

  16. Jaiswal, A., Das, R., Vivekanand, K., Abraham, P.M., Adyanthaya, S., Poddar, P.: J. Phys. Chem. C 114, 2108 (2010)

    Article  Google Scholar 

  17. Zhang, S.T., Lu, M.H., Wu, D., Chen, Y.F., Ming, N.B.: Appl. Phys. Lett. 87, 262907 (2005)

    Article  ADS  Google Scholar 

  18. Chang, D.A., Lin, P., Tseng, T.Y.: J. Appl. Phys. 77, 4445 (1995)

    Article  ADS  Google Scholar 

  19. Joshi, U.A., Jang, J.S., Borse, P.H., Lee, J.S.: Appl. Phys. Lett. 92, 242106 (2008)

    Article  ADS  Google Scholar 

  20. Maxwell, P.C.: Electricity and Magnetism, vol. 1. Oxford University Press, Oxford. Section 328

  21. Koops, C.G.: Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Science and Technology (DST) India through grant No. SR/FTP/PS-91/2009. Manisha Arora is thankful to JIIT Noida for providing Teaching Assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, M., Sati, P.C., Chauhan, S. et al. Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route. J Supercond Nov Magn 26, 443–448 (2013). https://doi.org/10.1007/s10948-012-1761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1761-4

Keywords

Navigation