Skip to main content
Log in

Structural and Magnetic Properties of Nano-structured Eu3+ Substituted M-Type Hexaferrites Synthesized by Sol-Gel Auto-combustion Technique

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Nano-structured M-type hexaferrites having the nominal composition Sr0.8Ca0.2Eu x Fe12−x O19 (x=0.0, 0.05, 0.1, 0.15, 0.2, 0.25) have been synthesized by a sol-gel auto-combustion technique. The aim of the present study is to investigate the effect of rare-earth Eu3+ ions substitution at Fe3+ site on the structural and magnetic properties of M-type hexaferrites that might have not been previously explored especially using the sol-gel auto-combustion technique. The samples have been characterized by Differential Scanning Calorimetry (DSC), Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (ED-XRF) and vibrating sample magnetometer (VSM). The XRD analysis confirms the formation of single M-type hexaferrite phase. The ratio ‘c/a’ lies in the expected range of 3.946–3.951 for M-type hexaferrites phase. The crystallite size was found to be in the range of 15–45 nm, which is sufficient to obtain the suitable signal to noise ratio in the high density recording media. Scanning Electron Microscopy (SEM) analysis exhibits the morphology of grains to be hexagonal platelet. The values of remanence (M r ) and maximum magnetization (M) lie in the range 31–68 emu/g and 47–90 emu/g, respectively. The coercivity (H c ) values lie in the range of 2412–4046 Oe and enhancement in the coercivity may be due to increase in the shape anisotropy. The magnetic properties such as coercivity (H c ), magnetization (M), and retentivity (M r ) make the synthesized materials useful for applications in the recording media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hernandez, P., Francisco, C.D., Munoz, J.M., Iniguez, J., Torres, L., Zazo, M.: J. Magn. Magn. Mater. 123, 157–158 (1996)

    Google Scholar 

  2. Jin, Z., Tang, W., Zhang, J., Lin, H., Du, Y.: J. Magn. Magn. Mater. 182, 231–237 (1998)

    Article  ADS  Google Scholar 

  3. Kagotani, T., Fujiwara, D., Sugimoto, S., Inomata, K., Homma, M.: J. Magn. Magn. Mater., 272–276 (2004)

  4. Mathew, D.S., Juang, R.S.: Chem. Eng. J. 129, 51–65 (2007)

    Article  Google Scholar 

  5. Gleiter, H.: Prog. Mater. Sci. 339, 223 (1989)

    Article  Google Scholar 

  6. Fendler, H.J.: Chem. Rev. 87, 877 (1987)

    Article  Google Scholar 

  7. Abdullah, M.H., Yusoff, A.N.: J. Alloys Compd. 233, 129–135 (1996)

    Article  Google Scholar 

  8. Lotgering, F.K., Locher, P.R., Van Stapele, R.P.: J. Phys. Chem. Solids 41, 481–487 (1980)

    Article  ADS  Google Scholar 

  9. Ida, K., Minachi, Y., Masuzawa, K., Nishio, H., Taguchi, H.: J. Magn. Soc. Jpn. 23, 1093–1098 (1999)

    Article  Google Scholar 

  10. Taguchi, H., Minachi, Y., Masuzawa, K.: In: Proc. of the 8th International Conference on Ferrites, Kyoto, Japan, Sept. 18–21, p. 405 (2000)

    Google Scholar 

  11. Kools, F., Morel, A., Tenaud, P., Rossignol, M., Isnard, O., Grössinger, R., Le Breton, J.M., Teillet, J.: In: Proc. of the 8th International Conference on Ferrites, Kyoto, Japan, Sept. 18–21, p. 437 (2000)

    Google Scholar 

  12. Lechevallier, L., Le Breton, J.M., Wang, J.F., Harris, I.R.: J. Magn. Magn. Mater. 269, 192–196 (2004)

    Article  ADS  Google Scholar 

  13. Mocuta, H., Lechevallier, L., Le Breton, J.M., Wang, J.F., Harris, I.R.: J. Alloys Compd. 364, 48–52 (2004)

    Article  Google Scholar 

  14. Wang, L.X., Song, J., Zhang, Q.T., Huang, X.G., Xu, N.C.: J. Alloys Compd. 481, 863–866 (2009)

    Article  Google Scholar 

  15. Singh, S., Rama, N., Rao, R.: Appl. Phys. Lett. 88, 111–222 (2006)

    Google Scholar 

  16. De Sousa, V.C., Morelli, M.R., Kiminami, R.H.G.: Ceram. Int. 26, 561–564 (2000)

    Article  Google Scholar 

  17. Mallick, K.K., Shepherd, P., Green, R.J.: J. Eur. Ceram. Soc. 27, 2045–2052 (2007)

    Article  Google Scholar 

  18. Mali, A., Ataie, A.: Scr. Mater. 53, 1065–1070 (2005)

    Article  Google Scholar 

  19. Surig, C., Hempel, K.A., Bonnenbrog, D.: IEEE Trans. Magn. 30, 4092 (1994)

    Article  ADS  Google Scholar 

  20. Yue, Z.X., Zhou, J., Li, L.T., Zhang, H.G., Gui, Z.L.: J. Magn. Magn. Mater. 208, 55–60 (2000)

    Article  ADS  Google Scholar 

  21. Iqbal, M.J., Ashiq, M.N., Gomez, P.H., Munoz, J.M.: J. Alloys Compd. 500, 113–116 (2010)

    Article  Google Scholar 

  22. Rezlescu, N., Doroftei, C., Rezlescu, E., Popa, P.D.: Phys. Status Solidi 15, 3844–3851 (2006)

    Article  ADS  Google Scholar 

  23. Wagner, T.R.: J. Solid State Chem. 136, 120–124 (1998)

    Article  ADS  Google Scholar 

  24. Iqbal, M.J., Farooq, S.: J. Alloys Compd. 505, 560–567 (2010)

    Article  Google Scholar 

  25. Xu, J., Ji, G., Zou, H., Song, Y., Gan, S.: J. Magn. Magn. Mater. 323, 157–162 (2011)

    ADS  Google Scholar 

  26. Iqbal, M.J., Ashiq, M.N., Gomez, P.H., Munoz, J.M.: Scr. Mater. 57, 1093–1096 (2007)

    Article  Google Scholar 

  27. Skomski, R., Coey, J.M.D.: Permanent magnetism, British Library Cataloguing-in-Publication data. ISBN 0750304782

  28. Iqbal, M.J., Ashiq, M.N., Gomez, P.H., Munoz, J.M.: J. Magn. Magn. Mater. 320, 881–886 (2008)

    Article  ADS  Google Scholar 

  29. Iqbal, M.J., Khan, R.A.: J. Alloys Compd. 478, 847–852 (2009)

    Article  Google Scholar 

  30. Yongfei, W., Qiaoling, L., Cunrui, Z., Hongxia, J.: J. Alloys Compd. 467, 284–287 (2009)

    Article  Google Scholar 

  31. Litsardakis, G., Manolakis, I., Serletis, C., Efthimiadis, K.G.: J. Magn. Magn. Mater. 316, 170–173 (2007)

    Article  ADS  Google Scholar 

  32. Litsardakis, G., Manolakis, I., Serletis, C., Efthimiadis, K.G.: J. Magn. Magn. Mater. 310, e884–e886 (2007)

    Article  ADS  Google Scholar 

  33. Fang, H.C., Yang, Z., Ong, C.K., Lie, Y., Wang, C.S.: J. Magn. Magn. Mater. 187, 292–300 (1998)

    Google Scholar 

  34. Jacobo, S.E., Civali, L., Blesa, M.A.: J. Magn. Magn. Mater. 260, 37–41 (2003)

    Article  ADS  Google Scholar 

  35. Ashiq, M.N., Iqbal, M.J., Gul, I.H.: J. Alloys Compd. 487, 341–345 (2009)

    Article  Google Scholar 

  36. Rezlescu, E., Rezlescu, N., Pasnicu, C., Craus, M.L., Popa, P.D.: Cryst. Res. Technol. 31, 343–352 (1996)

    Article  Google Scholar 

  37. Li, Y., Liu, R., Zhang, Z., Xiong, C.: Mater. Chem. Phys. 64, 256–259 (2000)

    Article  Google Scholar 

  38. Popa, P.D., Rezlescu, E., Doroftei, C., Rezlescu, N.: J. Optoelectron. Adv. Mater. 7, 1553–1556 (2005)

    Google Scholar 

  39. Liu, X.S., Gomez, H., Huang, K., Zhou, S.Q., Wang, Y., Cai, X., Sun, H.J., Ma, B.: J. Magn. Magn. Mater. 305, 524–528 (2006)

    Article  ADS  Google Scholar 

  40. Rai, G.M., Iqbal, M.A., Kubra, K.T.: J. Alloys Compd. 495, 229–233 (2010)

    Article  Google Scholar 

  41. Smit, J., Wijn, H.P.J.: Adv. Electron Phys. 6, 69 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsan Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, I., Islam, M.U., Awan, M.S. et al. Structural and Magnetic Properties of Nano-structured Eu3+ Substituted M-Type Hexaferrites Synthesized by Sol-Gel Auto-combustion Technique. J Supercond Nov Magn 26, 3315–3323 (2013). https://doi.org/10.1007/s10948-013-2180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2180-x

Keywords

Navigation