Skip to main content
Log in

Structural and Magnetic Properties of Nanocrystalline Lithium–Zinc Ferrite Synthesized by Microwave-Induced Glycine–Nitrate Process

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this study, nanocrystalline Li–Zn ferrites with the chemical composition Li0.5Zn x Fe2.5−x O4 (where x=0, 0.1,0.2,0.3,0.4,0.5) were synthesized by the glycine–nitrate process using glycine as a fuel, nitrate as an oxidizer and microwave oven as a heat source. The combustion reaction was studied by differential thermal analysis and thermogravimetry. The experimentally determined combustion reaction is extremely exothermic and it occurs at 170 C. The as-synthesized powders were characterized by X-ray diffraction technique. X-ray diffraction data shows that nanocrystalline Li–Zn ferrite powders with a spinel structure have been formed successfully in all samples. Morphological studies using scanning electron microscopy and field emission scanning electron microscopy show agglomerated clusters with a lot of pores attributed to the large amount of gases released during the combustion synthesis with the particle size of 20–40 nm. The magnetic measurements on the as-synthesized powders and compacted samples were carried out using a vibrating sample magnetometer and an inductance/capacitance/resistance meter, respectively. Saturation magnetization increases with the increase in zinc concentration up to x=0.2 and then it decreases with the increase in the zinc content. In addition, maximum magnetic permeability also obtained for the sample with x=0.2 at different frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hankare, P.P., Patil, R.P., Sankpal, U.B., Garadkar, K.M., Sasikala, R., Tripathi, A.K., Mulla, I.S.: Magnetic, dielectric and complex impedance spectroscopic studies of nanocrystalline Cr substituted Li-ferrite. J. Magn. Magn. Mater. 322, 2629–2633 (2010)

    Article  ADS  Google Scholar 

  2. Mazen, S.A., Dawoud, H.A.: Temperature and composition dependence of dielectric properties in Li–Cu ferrite. Mater. Chem. Phys. 82, 557–566 (2003)

    Article  Google Scholar 

  3. Fu, Y.P., Hsu, C.S.: Li0.5Fe2.5−x Mn x O4 ferrite sintered from microwave-induced combustion. Solid State Commun. 134, 201–206 (2005)

    Article  ADS  Google Scholar 

  4. Manjura Hoque, S., Samir Ullah, M., Khan, F.A., Hakim, M.A., Saha, D.K.: Structural and magnetic properties of Li–Cu mixed spinel ferrites. Physica B, Condens. Matter 406, 1799–1804 (2011)

    Article  ADS  Google Scholar 

  5. Fu, Y.P.: Microwave-induced combustion synthesis of Li0.5Fe2.5−x Cr x O4 powder and their characterization. Mater. Res. Bull. 41, 809–816 (2006)

    Article  Google Scholar 

  6. Watawe, S.C., Sarwade, B.D., Bellad, S.S., Sutar, B.D., Chougule, B.K.: Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55–60 (2000)

    Article  ADS  Google Scholar 

  7. Akhter, S., Hakim, M.A.: Magnetic properties of cadmium substituted lithium ferrites. Mater. Chem. Phys. 120, 399–403 (2010)

    Article  Google Scholar 

  8. Soibam, I., Phanjoubam, S., Sharma, H.B., Sarma, H.N.K., Prakash, C.: Magnetic studies of Li–Zn ferrites prepared by citrate precursor method. Physica B, Condens. Matter 404, 3839–3841 (2009)

    Article  ADS  Google Scholar 

  9. Ravinder, D.: Far-infrared spectral studies of mixed lithium–zinc ferrites. Mater. Lett. 40, 205–208 (1999)

    Article  Google Scholar 

  10. Reddy, P.V.B., Reddy, V.R., Gupta, A., Gopalan, R., Reddy, C.G.: Mössbauer study of nano-crystalline Li–Zn ferrites. Hyperfine Interact. 183, 253–258 (2008)

    Article  Google Scholar 

  11. Jiang, X.N., Lan, Z.W., Yu, Z., Liu, P.Y., Chen, D.Z., Liu, C.Y.: Sintering characteristics of Li–Zn ferrites fabricated by a sol–gel process. J. Magn. Magn. Mater. 321, 52–55 (2009)

    Article  ADS  Google Scholar 

  12. Snelling, E.C.: Ferrites for Inductors and Transformers. Research Studies Press, New York (1983)

    Google Scholar 

  13. Gheisari, K., Bhame, S.D., Oh, J.T., Javadpour, S.: Comparative studies on the structure and magnetic properties of Ni–Zn ferrite powders prepared by glycine–nitrate auto-combustion process and solid state reaction method. J. Supercond. Nov. Magn. 26, 477–483 (2013)

    Article  Google Scholar 

  14. Patil, K.C., Hegde, M.S.: Chemistry of Nanocrystalline Oxide Materials. World Scientific Publishing Co. Pte. Ltd., London (2008)

    Book  Google Scholar 

  15. Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., Exarhos, G.J.: Glycine–nitrate combustion synthesis of oxide ceramic powders. Mater. Lett. 10, 6–12 (1990)

    Article  Google Scholar 

  16. Hajarpour, S., Gheisari, Kh., Honarbakhsh Raouf, A.: Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine–nitrate combustion process. J. Magn. Magn. Mater. 329, 165–169 (2013)

    Article  ADS  Google Scholar 

  17. Mirshekari, G.R., Daee, S., Mohseni, H., Torkian, S., Ghasemi, M., Ameriannejad, M., Hoseinizade, M., Pirnia, M., Pourjafar, D., Pourmahdavi, M., Gheisari, K.: Structure and magnetic properties of Mn–Zn ferrite synthesized by glycine–nitrate auto-combustion process. Adv. Mater. Res. 409, 520–525 (2012)

    Article  Google Scholar 

  18. Mohseni, H., Shokrollahi, H., Sharifi, I., Gheisari, Kh.: Magnetic and structural studies of the Mn-doped Mg–Zn ferrite nanoparticles synthesized by the glycine–nitrate process. J. Magn. Magn. Mater. 324, 3741–3747 (2012)

    Article  ADS  Google Scholar 

  19. Sertkol, M., Köseoglu, Y., Baykal, A., Kavas, H., Bozkurt, A., Toprak, M.S.: Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles. J. Alloys Compd. 486, 325–329 (2009)

    Article  Google Scholar 

  20. Costa, A.C.F.M., Vieira, D.A., Silva, V.J., Diniz, V.C.S., Kiminami, R.H.G.A., Gama, L.: Synthesis of the Ni–Zn–Sm ferrites using microwaves energy. J. Alloys Compd. 483, 37–39 (2009)

    Article  Google Scholar 

  21. Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics, 9th edn. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  22. Yue, Z., Zhou, J., Wang, X., Gui, Z., Li, L.: Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol–gel auto-combustion process. J. Eur. Ceram. Soc. 23, 189–193 (2003)

    Article  Google Scholar 

  23. Yue, Z., Zhou, J., Li, L., Zhang, H., Gui, Z.: Synthesis of nanocrystalline NiCuZn ferrite powders by sol–gel auto-combustion method. J. Magn. Magn. Mater. 208, 55–60 (2000)

    Article  ADS  Google Scholar 

  24. Graef, M.D., McHenry, M.E.: Structure of Materials: an Introduction to Crystallography, Diffraction, and Symmetry. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  25. Hankare, P.P., Kadam, M.R., Patil, R.P., Garadkar, K.M., Sasikala, R., Tripathi, A.K.: Effect of zinc substitution on structural and magnetic properties of copper ferrite. J. Alloys Compd. 501, 37–41 (2010)

    Article  Google Scholar 

  26. Tjong, S.C., Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R Rep. 45, 1–88 (2004)

    Article  Google Scholar 

  27. Sharma, S., Verma, K., Chaubey, U., Singh, V., Mehta, B.R.: Influence of Zn substitution on structural, microstructural and dielectric properties of nanocrystalline nickel ferrites. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 167, 187–192 (2010)

    Article  Google Scholar 

  28. Goldman, A.: Modern Ferrite Technology, 2nd edn. Springer, New York (2006)

    Google Scholar 

  29. Shen, Y., Hng, H.H., Oh, J.T.: Synthesis and characterization of high-energy ball milled Ni–15%Fe–5%Mo. J. Alloys Compd. 379, 266–271 (2004)

    Article  Google Scholar 

  30. Kumar, G., Chand, J., Dogra, A., Kotnal, R.K., Singh, M.: Improvement in electrical and magnetic properties of mixed Mg–Al–Mn ferrite system synthesized by citrate precursor technique. J. Phys. Chem. Solids 71, 375–380 (2010)

    Article  ADS  Google Scholar 

  31. Haque, M.M., Huq, M., Hakim, M.A.: Influence of CuO and sintering temperature on the microstructure and magnetic properties of Mg–Cu–Zn ferrites. J. Magn. Magn. Mater. 320, 2792–2799 (2008)

    Article  ADS  Google Scholar 

  32. Akther Hossain, A.K.M., Mahmud, S.T., Seki, M., Kawai, T., Tabata, H.: Structural, electrical transport, and magnetic properties of Ni1−x Zn x Fe2O4. J. Magn. Magn. Mater. 312, 210–219 (2007)

    Article  ADS  Google Scholar 

  33. Gutiérrez-López, J., Rodriguez-Senín, E., Pastor, J.Y., Paris, M.A., Martín, A., Levenfeld, B., Várez, A.: Microstructure, magnetic and mechanical properties of Ni–Zn ferrites prepared by powder injection moulding. Powder Technol. 210, 29–35 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Shahid Chamran University for providing support to this research through the Grant 91-4-06-636410. The authors are indebted to Dr. Ranjbar, Dr. Saemi and S. Tahanzadeh for their great assistance. We also would like to thank H. Mohseni and S. Hajarpour who gave us excellent advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gheisari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borhan, N., Gheisari, K. Structural and Magnetic Properties of Nanocrystalline Lithium–Zinc Ferrite Synthesized by Microwave-Induced Glycine–Nitrate Process. J Supercond Nov Magn 27, 1483–1490 (2014). https://doi.org/10.1007/s10948-013-2450-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2450-7

Keywords

Navigation