Skip to main content
Log in

Influence of Co2+ Substitution on Cation Distribution and on Different Properties of NiFe 2 O 4 Nanoparticles

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ni1−x Co x Fe2O4 nanoparticles with x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 (named NC0, NC10, NC20, NC30, NC40, and NC50, respectively) were synthesized by wet chemical co-precipitation method. The prepared nanoparticles were crystallized in the cubic spinel structure of space group Fd3m with a narrow size distribution from 13 to 24 nm. The saturation magnetization was strongly influenced with Co2+ concentrations. The cation distribution, the spin canting, and the presence of Fe2+ ions along with Fe3+ ions were responsible for the variation in saturation magnetization. Cation distribution estimated from saturation magnetization suggested the mixed spinel structure of Ni1−x Co x Fe2O4 system. The calculated g values from electron spin resonance spectra were consistent with the variation of saturation magnetization. UV–vis diffuse spectra indicated that Ni1−x Co x Fe2O4 samples were indirect band gap materials and band gap decreased with increasing Co2+ concentration. Dielectric constant and dielectric loss showed frequency-dependent dispersion along with enhancement dielectric constant with increasing Co2+ concentration. The complex impedance analysis confirmed that the conduction process predominantly takes place through grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H., Zou, G.: Mater. Lett. 60, 3548–3552 (2006)

    Article  Google Scholar 

  2. Sousa, M.H., Tourinho, F.A.: J. Phys. Chem. B 105(6), 1168–1175 (2001)

    Article  Google Scholar 

  3. Mazaleyrat, F., Varga, L.K.: J. Magn. Magn. Mater. 215, 253–259 (2000)

    Article  ADS  Google Scholar 

  4. Speliotis, D.E.: J. Magn. Magn. Mater 193, 29–35 (1999)

    Article  ADS  Google Scholar 

  5. Kumar, S., Alimuddin, R.K., Thakur, P., Chae, K.H., Angadi, B., Choi, W.K.: J. Phys.: Condens. Matter 19, 476210(1-15) (2007)

    Google Scholar 

  6. Bhargava, S.C., Zeman, N.: Phys. Rev. B 21, 1717–1725 (1980)

    Article  ADS  Google Scholar 

  7. Wang, L., Li, F.S.: Chin. Phys. B 17/5, 1858–1862 (2008)

    ADS  Google Scholar 

  8. Bean, C.P., Livingston, J.D.: J. Appl. Phys. 30(4), S120–S129 (1959)

    Article  ADS  Google Scholar 

  9. Wernsdorfer, W., Orozco, E.B., Hasselbach, K., Benoit, A., Mailly, D., Kubo, O., Nakano, H., Barbara, B.: Phys. Rev. Lett. 79, 4014–4017 (1997)

    Article  ADS  Google Scholar 

  10. Roy, S., Dubenko, I., Edorh, D.D., Ali, N.: J. Appl. Phys. 96, 1202–1208 (2004)

    Article  ADS  Google Scholar 

  11. Pradhan, S.K., Bid, S., Gateshki, M., Petkov, V.: Mater. Chem. Phys. 93, 224–230 (2005)

    Article  Google Scholar 

  12. Maazen, K.: Physica B 404, 3947–3951 (2009)

    Article  ADS  Google Scholar 

  13. Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B.: J. Magn. Magn. Mater 303, 131–137 (2006)

    Article  ADS  Google Scholar 

  14. Kim, C.K., Lee, J.H., Katoh, S., Yoshimura, M.: MRS Bull. 36, 2241–2250 (2001)

    Article  Google Scholar 

  15. Gao, X., Du, Y., Liu, X., Xu, P., Han, X.: MRS Bull. 46, 643–648 (2011)

    Article  Google Scholar 

  16. Atif, M., Nadeem, M., Grössinger, R., Turtelli, R.S.: J. Alloys Compd. 509, 5720–5724 (2011)

    Article  Google Scholar 

  17. Guyot, M.: J. Magn. Magn. Mater. 18, 925–926 (1980)

    Article  ADS  Google Scholar 

  18. Maaz, K., Khalid, W., Mumtaz, A., Hasanain, S.K., Liu, J., Duan, J.L.: Physica E 41, 593–599 (2009)

    Article  ADS  Google Scholar 

  19. Pillai, V., Shah, D.O.: J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  ADS  Google Scholar 

  20. Skomski, R.: J. Phys.: Condens. Matter 15, R841–R896 (2003)

    ADS  Google Scholar 

  21. Kambale, R.C., Shaikh, P.A., Kamble, S.S., Kolekar, Y.D.: J. Alloys Compd. 478, 599–603 (2009)

    Article  Google Scholar 

  22. Shobana, M. K., Sankar, S.: J. Magn. Magn. Mater. 321, 3132–3137 (2009)

    Article  ADS  Google Scholar 

  23. International Centre for Diffraction Data, JCPDS. Card No. PDIS-20iRB (1979)

  24. Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: J. Mol. Struct. 1076, 55–62 (2014)

    Article  ADS  Google Scholar 

  25. Cullity, B.D.: Elements of X-ray Diffraction. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  26. Smit, J., Wijn, H.P.J.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  27. Mukherjee, R., Sahu, T., Sen, S., Sahu, P.: Mater. Chem. Phys. 128, 365–370 (2011)

    Article  Google Scholar 

  28. Gupta, R., Sood, A.K., Metcalf, P., Honig, J.M.: Phys. Rev. B 65, 104430–8 (2002)

    Article  ADS  Google Scholar 

  29. Jacintho, G.V.M., Brolo, A.G., Corio, P., Suarez, P.A.Z., Rubim, J.C.: J. Phys. Chem. C 113, 7684–7691 (2009)

    Article  Google Scholar 

  30. Baruwati, B., Reddy, K.M., Manorama, S.V., Singh, R.K., Parkash, O.: Appl. Phys. Lett. 85, 2833–2835 (2004)

    Article  ADS  Google Scholar 

  31. Oku, M., Hirokawa, K.: J. Electron. Spectrosc. Relat. Phenom. 8, 475–481 (1976)

    Article  Google Scholar 

  32. Tan, B.J., Klabunde, K.J., Sherwood, P.M.A.: J. Am. Chem. Soc. 113, 855–861 (1991)

    Article  Google Scholar 

  33. Carley, A.F., Rassias, S., Roberts, M.W.: Surf. Sci. 135, 35–51 (1983)

    Article  ADS  Google Scholar 

  34. Goldman, A.: Modern Ferrites Technology, vol. 32. Springer, New York (2006)

    Google Scholar 

  35. Akhter, S., Hakim, M.A.: Mater. Chem. Phys. 120, 399–403 (2010)

    Article  Google Scholar 

  36. Ngo, A.T., Bonville, P., Pileni, M.P.: J. Appl. Phys. 89, 3370–3376 (2001)

    Article  ADS  Google Scholar 

  37. Sertkol, M., Köseoglu, Y., Baykal, A., Kavas, H., Toprak, M.S.: J. Magn. Magn. Mater. 322, 866–871 (2010)

    Article  ADS  Google Scholar 

  38. Köseoglu, M.B.Y., Tan, M., Baykal, A., Sözeri, H., Topkaya, R., Akdogan, N.: J. Nanopart Res. 13, 2235–2244 (2011)

    Article  Google Scholar 

  39. Kasapoglu, N., Birsöz, B., Baykal, A., Köseoglu, Y., Toprak, M.S.: Central European J. Chem. 5, 570–580 (2007)

    Google Scholar 

  40. Poole, C.P., Farach, H.A.: Relaxation in Magnetic Resonance. Academic Press, London (1971)

    Google Scholar 

  41. Pankove, J.I.: Optical Processes in Semiconductors. Prentice-Hall, Englewood Cliffs (1971)

    Google Scholar 

  42. Szotek, Z., Temmerman, W.M., Ködderitzsch, D., Svane, A., Petit, L., Winter, H.: Phys. Rev. B 74, 174431–12 (2006)

    Article  ADS  Google Scholar 

  43. Zannoni, E., Cavalli, E., Toncelli, A., Tonelli, M., Bettinelli, M.: J. Phys. Chem. Solids 60, 449–455 (1999)

    Article  ADS  Google Scholar 

  44. Tanaka, K., Nakashima, S., Fujita, K., Hirao, K.: J. Phys.: Condens. Matter. 15, L469–L474 (2003)

    ADS  Google Scholar 

  45. Zhang, X.X., Schoenes, J., Reim, W., Wachter, P.: J. Phys. C: Solid State Phys 16, 6055–6072 (1983)

    Article  ADS  Google Scholar 

  46. Look, D.C., Farlow, G.C., Reunchan, P., Limpijumnong, S., Zhang, S.B., Nordlund, K.: Phys. Rev. Lett. 95, 225502(1-4) (2005)

    Article  ADS  Google Scholar 

  47. Bohra, M., Prasad, S., Kumar, N., Misra, D.S., Sahoo, S.C., Venkataramani, Krishnan, N.R.: Appl. Phys. Lett. 88, 262506(1-3) (2006)

    Article  Google Scholar 

  48. Gao, D., Shi, Z., Xu, Y., Zhang, J., Yang, G., Zhang, J., Wang, X., Xue, D.: Nanoscale Res. Lett. 5, 1289–1294 (2010)

    Article  ADS  Google Scholar 

  49. Shaikh, A.M., Bellard, S.S., Chougule, B.K.: J. Magn. Magn. Mater 195, 384–390 (1999)

    Article  ADS  Google Scholar 

  50. Koops, C.G.: Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  51. Rabinkin, L.T., Novikova, Z.I.: Ferrites, Minsk: Acad. Nauk. USSR 12, 146 (1960)

    Google Scholar 

  52. Popandian, N., Balay, P., Narayanasamy, A.: J. Phys.: Condens. Matter 14, 3221–3237 (2002)

    ADS  Google Scholar 

  53. Singh, A.K., Goel, T.C., Mendiratta, R.G., Thankur, O.P., Prakash, C.: J. Appl. Phys. 91, 6626–6629 (2002)

    Article  ADS  Google Scholar 

  54. Austin, I.G., Mott, N.F.: Adv. Phys. 50, 757–812 (2001)

    Article  ADS  Google Scholar 

  55. Batoo, K.M., Kumar, S., Lee, C.G., Alimuddin: Curr. Appl. Phys. 9, 826–832 (2009)

    Article  ADS  Google Scholar 

  56. Baruwati, B., Rana, R.K., Sunkara, S., Manorma, V.: J. Appl. Phys. 101, 014302(1-7) (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S., Kumar, M. Influence of Co2+ Substitution on Cation Distribution and on Different Properties of NiFe 2 O 4 Nanoparticles. J Supercond Nov Magn 29, 1561–1572 (2016). https://doi.org/10.1007/s10948-016-3442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3442-1

Keywords

Navigation