Skip to main content
Log in

Manipulation of Magnetic Properties of Cr-Substituted Ni Ferrite Synthesized by Conventional Ceramic Technique

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A series of polycrystalline Ni–Cr ferrites, with the composition NiCr x Fe 2−x O 4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0), were synthesized by conventional solid state ceramic method. The effect of Cr substitution on the structural, morphological, and magnetic properties of Ni ferrite has been investigated. Formation of single-phase cubic spinel structure of the compositions has been confirmed by X-ray diffraction. The morphological study was performed by scanning electron microscopy, and the average grain size was found to decrease with increasing Cr content. The magnetic properties of the samples were measured using an impedance analyzer and a vibrating sample magnetometer. Saturation magnetization, coercivity, and remanent magnetization have been measured from the hysteresis curves. The value of the saturation magnetization was found to decrease with increasing Cr concentration. The values of coercivity, remanent magnetization, and remanence ratio (M r/M s) ratio were also reported. The Curie temperatures (T c) were determined from the plots of the real part of permeability (\(\mu _{\mathrm {i}}^{/}\)) versus temperature, and the values were found to be 511, 465, 415, 364, and 338 C for x = 0.0, 0.2, 0.4, 0.6, and 0.8, respectively. The frequency dependence of the \(\mu _{\mathrm {i}}^{/}\), loss factor, and quality factor has been studied as a function of composition in the frequency range 1 kHz–120 MHz. The real part of permeability was observed to be steady up to ∼10 MHz for all the samples. The loss factor (tan δ) of the samples decreased rapidly before 40 kHz and became almost constant with low values after 40 kHz. The values of quality factor have gradually been increased for samples with x ≤ 0.4, whilst the values diminished for samples with x ≥ 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kulikowski, J.: J. Magn. Magn. Mater. 41(1–3), 56–62 (1984). doi:10.1016/0304-8853(84)90136-7

    Article  ADS  Google Scholar 

  2. Sugimoto, M.: J. Am. Ceram. Soc. 82(2), 269–280 (1999)

    Article  Google Scholar 

  3. Smit, J., Wijn, H.P.J.: Ferrites. Wiley, New York (1959)

    Google Scholar 

  4. Joshi, S., Kumar, M., Chhoker, S., Srivastava, G., Jewariya, M., Singh, V.N.: J. Mol. Struc. 1076, 55–62 (2014). doi:10.1016/j.molstruc.2014.07.048

    Article  ADS  Google Scholar 

  5. Chinnasamy, C.N., Narayanasamy, A., Ponpandian, N., Chattopadhayay, K., Shinoda, K., Jeyadevan, B., Tohji, B., Nakatsuka, K., Furubayashi, T., Nakatani, I.: Phys. Rev. B 63, 184108–6 (2001). doi:10.1103/PhysRevB.63.184108

    Article  ADS  Google Scholar 

  6. Smart, J.S.: Am. J. Phys. 23, 356–370 (1955)

    Article  ADS  Google Scholar 

  7. Lee, S.H., Yoon, S.J., Lee, G.J., Kim, H.S., Yo, C.H., Ahn, K., Lee, D.H., Kim, K.H.: Mater. Chem. Phys. 61, 147–152 (1999). doi:10.1016/S0254-0584(99)00136-4

    Article  Google Scholar 

  8. Jahan, N., Chowdhury, F.-U.-Z., Zakaria, A.K.M.: Mater. Sci.-Poland 34(1), 185–191 (2016). doi:10.1515/msp-2016-0028

    Google Scholar 

  9. Soohoo, R.F.: Theory and Applications of Ferrites. Prentice Hall, Englewood Cliffs (1960)

    Google Scholar 

  10. Zahir, R., Chowdhury, F.-U.-Z., Uddin, M.M., Hakim, M.A.: J. Magn. Magn. Mater. 410, 55–62 (2016). doi:10.1016/j.jmmm.2016.03.019

  11. Lang, L.L., Xu, J., Qi, W.H., Li, Z.Z., Tang, G.D., Shang, Z.F., Zhang, X.Y., Wu, L.Q., Xue, L.C.: J. Appl. Phys. 116, 123901 (2014). doi:10.1063/1.4896187

    Article  ADS  Google Scholar 

  12. Singh, A.K., Singh, A.K., Goel, T.C., Mendiratta, R.G.: J. Magn. Magn. Mater. 281, 276–280 (2004). doi:10.1016/j.jmmm.2004.04.115

    Article  ADS  Google Scholar 

  13. Sun, K., Lan, Z., Yu, Z., Li, L., Huang, J., Zhao, X.: J. Magn. Magn. Mater. 320, 3352–3355 (2008). doi:10.1016/j.jmmm.2008.07.015

    Article  ADS  Google Scholar 

  14. Zhang, W., Zuo, X., Zhang, D., Wu, C., Silva, S.R.P.: Nanotech. 27, 245707 (2016). doi:10.1088/0957-4484/27/24/245707

    Article  ADS  Google Scholar 

  15. Kadam, R.H., Karim, A., Kadam, A.B., Gaikwad, A.S., Shirsath, S.E.: Inter. Nano Lett. 2, 28 (2012). doi:10.1186/2228-5326-2-28

    Article  ADS  Google Scholar 

  16. Gabal, M.A., Al Angari, Y.M., Al-Agel, F.A.: J. Magn. Magn. Mater. 391, 108–115 (2015). doi:10.1016/j.jmmm.2015.04.115

    Article  ADS  Google Scholar 

  17. Mbela, K, Moyo, T., Msomi, J.Z., Öztürk, M., Akdog’an, N.: J. Magn. Magn. Mater. 330, 159–162 (2013). doi:10.1016/j.jmmm.2012.10.045

    Article  ADS  Google Scholar 

  18. Snoek, J.L.: Physica 14, 207–217 (1948). doi:10.1016/0031-8914(48)90038-X

    Article  ADS  Google Scholar 

  19. Faraz, A., Maqsood, A.: J. Supercond. Nov. Magn. 25, 509–517 (2012). doi:10.1007/s10948-011-1319-x

    Article  Google Scholar 

  20. Zaki, H.M.: Physica B 404, 3356–3362 (2009). doi:10.1016/j.physb.2009.05.012

    Article  ADS  Google Scholar 

  21. Ravinder, D., Latha, K.: J. Appl. Phys. 75, 6118–6120 (1994). doi:10.1063/1.355479

    Article  ADS  Google Scholar 

  22. Smit, J.: Magnetic Properties of Material. McGraw-Hill, New York (1977)

    Google Scholar 

  23. Kaiyuan, H.E., Hui, X.U., Zhi, W., Lizhi, C.: J. Mater. Sci. Technol. 16, 145–147 (2000)

    Google Scholar 

  24. Dillon, J.F., Earl, H.E.: J. Appl. Phys. 30, 202–213 (1959). doi:10.1063/1.1735134

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are thankful for the laboratory support of the Institute of Nuclear Science and Technology and the Materials Science Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh. The authors are grateful to the authority of the Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.-U.-Z. Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, N., Chowdhury, FUZ., Zakaria, A.K.M. et al. Manipulation of Magnetic Properties of Cr-Substituted Ni Ferrite Synthesized by Conventional Ceramic Technique. J Supercond Nov Magn 30, 261–268 (2017). https://doi.org/10.1007/s10948-016-3713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3713-x

Keywords

Navigation