Skip to main content
Log in

Customized MgB2 Superconducting Wire Toward Practical Applications at Sam Dong in Korea

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

MgB2 superconducting wire from Sam Dong Co., Ltd. in Korea is suitable for various applications, including medical resonance imaging, fault current limiters, power cables, and transformers. So far, issues related to the wire production cost, current-carrying capacity, and conductor length (kilometers) are very important for further commercialization. Since 2014, our intensive research efforts have led to notable progress. Herein, we summarize and discuss our advanced research for achieving high-performance, scalable, and cost-effective MgB2 wires at Sam Dong. Based on our accumulated technical know-how, we will continue to fabricate more competitive and efficient MgB2 superconducting wires that will be suitable for the customer’s purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    Article  ADS  Google Scholar 

  2. Kim, J.H., Oh, S., Kumakura, H., Matsumoto, A., Heo, Y.U., Song, K.S., Kang, Y.M., Maeda, M., Rindfleisch, M., Tomsic, M., Choi, S., Dou, S.X.: Tailored materials for high performance MgB2 wire. Adv. Mater. 23, 4942–4946 (2011)

    Article  Google Scholar 

  3. Patel, D., Hossain, M.S.A., Motaman, A., Barua, S., Shahabuddin, M., Kim, J.H.: Rational design of MgB2 conductors toward practical applications. Cryogenics 63, 60–165 (2014)

    Article  Google Scholar 

  4. Iwasa, Y.: HTS and NMR/MRI magnets: unique features, opportunities, and challenges. Phys. C 445-448, 1088–1094 (2006)

    Article  ADS  Google Scholar 

  5. Lakrimi, M., Thomas, A.M., Hutton, G., Kruip, M., Slade, R., Davis, P., Johnstone, A.J., Longfield, M.J., Blakes, H., Calvert, S., Smith, M., Marshall, C.A: The principles and evolution of magnetic resonance imaging. J. Phys.: Conf. Ser. 286, 012016 (2011)

    Google Scholar 

  6. Cosmus, T.C., Paizh, M.: Advances in whole-body MRI magnets. IEEE Trans. Appl. Supercond. 21, 2104–2109 (2011)

    Article  ADS  Google Scholar 

  7. Parizh, M., Lvovsky, Y., Sumption, M.: Conductors for commercial MRI magnets beyond NbTi: requirements and challenges. Supercond. Sci. Technol. 30, 014007 (2017)

    Article  ADS  Google Scholar 

  8. Patel, D., Hossain, M.S.A., Qiu, W., Jie, H., Yamauchi, Y., Maeda, M., Tomsic, M., Choi, S., Kim, J.H.: Solid cryogen: a cooling system for future MgB2 MRI magnet. Sci. Rep. 7, 43444 (2017)

    Article  ADS  Google Scholar 

  9. Ballarino, A.: Development of superconducting links for the large Hadron Collider machine. Supercond. Sci. Technol. 27, 044024 (2014)

    Article  ADS  Google Scholar 

  10. Ballarino, A., Bruzek, C.E., Dittmar, N., Giannelli, S., Goldacker, W., Grasso, G., Grilli, F., Haberstroh, C., Hole, S., Lesur, F., Marian, A., Martiez-Val, J.M., Martini, L., Rubbia, C., Salmieri, D., Schmidt, F., Tropeano, M.: The BEST PATHS project on MgB2 superconducting cables for very high power transmission. IEEE Trans. Appl. Supercond. 26, 5401705 (2016)

    Article  Google Scholar 

  11. Hamajima, T., Amata, H., Iwasaki, T., Atomura, N., Tsuda, M., Miyagi, D., Shintomi, T., Makida, Y., Takao, T., Munakata, K., Kajiwara, M.: Application of SMES and fuel cell system combined with liquid hydrogen vehicle station to renewable energy control. IEEE Trans. Appl. Supercond. 22, 5701704 (2012)

    Article  Google Scholar 

  12. Marino, I., Pujana, A., Sarmiento, G., Sanz, S., Merino, J.M., Tropeano, M., Sun, J., Canosa, T.: Lightweight MgB2 superconducting 10 MW wind generator. Supercond. Sci. Technol. 29, 024005 (2016)

    Article  ADS  Google Scholar 

  13. Hishinum, Y., Kikuchi, A., Shimada, Y., Kashiwai, T., Hata, S., Yamada, S., Muroga, T., Sagara, A.: Development of MgB2 superconducting wire for the low activation superconducting magnet system operated around core D-T plasma. Fusion Eng. Des. 98-99, 1076–1080 (2015)

    Article  Google Scholar 

  14. Wilson, M.N.: Superconducting Magnets. Clarendon Press, Oxford (1983)

    Google Scholar 

  15. Glowacki, B.A., Majoros, M., Vickers, M., Evetts, J.E., Shi, Y., McDougall, I.: Superconductivity of powder-in-tube MgB2 wires. Supercond. Sci. Technol. 14, 193–199 (2001)

    Article  ADS  Google Scholar 

  16. Giunchi, G., Ceresara, S., Ripamonti, G., Zenobio, A.D., Rossi, S., Chiarelli, S., Spadoni, M., Wesche, R., Bruzzone, P.L.: High performance new MgB2 superconducting hollow wires. Supercond. Sci. Technol. 16, 285–291 (2003)

    Article  ADS  Google Scholar 

  17. Flukiger, R., Suo, H.L., Musolino, N., Beneduce, C., Toulemonde, P., Lezza, P.: Superconducting properties of MgB2 tapes and wires. Phys. C 385, 286–305 (2003)

    Article  ADS  Google Scholar 

  18. Hermann, M., Haessler, W., Rodig, C., Gruner, W., Holzapfel, B., Schultz, L.: Touching the properties of NbTi by carbon doped tapes with mechanically alloyed MgB2. Appl. Phys. Lett. 91, 082507 (2007)

    Article  ADS  Google Scholar 

  19. Hur, J.M., Togano, K., Matsumoto, A., Kumakura, H., Wada, H., Kimura, K.: Fabrication of high-performance MgB2 wires by an internal Mg diffusion process. Supercond. Sci. Technol. 21, 032001 (2008)

    Article  ADS  Google Scholar 

  20. Li, G.Z., Sumption, M.D., Susner, M.A., Yang, Y., Reddy, K.M., Rindfleisch, M., Tomsic, M., Thong, C.J., Collings, E.W.: The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires. Supercond. Sci. Technol. 25, 115023 (2012)

    Article  ADS  Google Scholar 

  21. Maeda, M., Uchiyama, D., Hossain, M.S.A., Ma, Z, Shahabuddin, M., Kim, J.H.: Control of core structure in MgB2 wire through tailoring boron powder. J. Alloys Compd. 636, 29–33 (2015)

    Article  Google Scholar 

  22. Bertora, L.: MRI magnets based on MgB2. In: Flukiger, R (ed.) MgB2 Superconducting Wires: Basics and Applications, pp 485–536. World Scientific, Hackensack (2016)

  23. Kim, J.H., Oh, S., Heo, Y. -U., Hata, S., Kumakura, H., Matsumoto, A., Mitsuhara, M., Choi, S., Shimada, Y., Maeda, M., MacManus-Driscoll, J.L., Dou, S.X.: Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi. NPG Asia Mater. 4, E3 (2012)

    Article  Google Scholar 

  24. Maeda, M., Kim, J.H., Heo, Y. -U., Kwon, S.K., Kumakura, H., Choi, S., Nakayama, Y., Takano, Y., Dou, S.X.: Superior MgB2 superconducting wire performance through oxygen-free pyrene additive. Appl. Phys. Express 5, 013101 (2012)

    Article  ADS  Google Scholar 

  25. Kim, J.H., Choi, S.: Carbon doping induced imperfections on MgB2 superconducting wire. J. Anal. Sci. Technol. 6, 11 (2015)

    Article  ADS  Google Scholar 

  26. Chen, S.K., Maeda, M., Yamamoto, A., Dou, S.X.: Chemically and mechanically engineered flux pinning for enhanced electromagnetic properties of MgB2. In: Crisan, A (ed.) Vortices and Nanostructured Superconductors, pp 81–108. Springer, Cham (2017)

  27. Patel, D., Hossain, M.S.A., See, K.W., Qiu, W., Kobayashi, H., Ma, Z., Kim, S.J., Hong, J., Park, J.Y., Choi, S., Maeda, M., Shahabuddin, M., Rindfleisch, M., Tomsic, M., Dou, S., Kim, J.H.: Evaluation of persistent-mode operation in a superconducting MgB2 coil in solid nitrogen. Supercond. Sci. Technol. 29, 04LT02 (2016)

    Article  Google Scholar 

  28. Iwasa, Y.: Towards liquid-helium-free, persistent-mode MgB2 MRI magnets: FBML experience. Supercond. Sci. Technol. 30, 053001 (2017)

    Article  ADS  Google Scholar 

  29. Hossain, M.S.A., Senatore, C., Rindfleisch, M., Flukiger, R.: Improvement of J c by cold high pressure densification of binary, 18-filament in situ MgB2 wires. Supercond. Sci. Technol. 24, 075013 (2011)

    Article  ADS  Google Scholar 

  30. Li, G., Zwayer, J.B., Kovacs, C.J., Susner, M.A., Sumption, M.D., Rindfleisch, M.A., Thong, C.J., Tomsic, M., Collings, E.W.: Transport critical current densities and n-values of multifilamentary MgB2 wires at various temperatures and magnetic fields. IEEE Trans. Appl. Supercond. 24, 6200105 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Prof. Jung Ho Kim and Dr. Tania Silver, University of Wollongong, Australia, for fruitful discussion and critical reading of the manuscript. The authors also express their gratitude to the Sam Dong Co., Ltd., Korea, for the support.

Funding

This work was supported by the Technology Innovation Program or Industrial Strategic Technology Development Program (20002088, Scalable integration of MgB2 superconducting wire towards cost effectiveness and industrial competitiveness) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea). This study was also supported by 2017 Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minoru Maeda or Seyong Choi.

Additional information

This paper was presented at ICSM 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.H., Lee, D.G., Jeon, J.H. et al. Customized MgB2 Superconducting Wire Toward Practical Applications at Sam Dong in Korea. J Supercond Nov Magn 32, 1219–1223 (2019). https://doi.org/10.1007/s10948-018-4814-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4814-5

Keywords

Navigation