Skip to main content
Log in

Manganese Zinc Ferrites: a Short Review on Synthesis and Characterization

  • Review
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Manganese zinc ferrites are technically and scientifically a very important class of ferrite materials because they possess a very high magnetic permeability and low core losses. These materials have been broadly used in electronic applications such as transformers, choke coils, noise filters, and memory devices. Extensive research has taken place and still going in this field of science and technology. Applications of Mn-Zn ferrites in last 10 years are reviewed. General features, properties, and applications are discussed. Also, the various synthesis techniques used for the preparation of Mn-Zn ferrites are also considered such as normal ceramic technique, sol-gel method, hydrothermal method, co-precipitation method, and citrate precursor method. As the field is quite large, a reasonable effort has been made to include some of the original references discussing in details the specific outcome of the papers published.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sugimoto, M.: The past, present, and future of ferrites. J Am Ceram Soc. 82, 269–280 (2004). https://doi.org/10.1111/j.1551-2916.1999.tb20058.x

    Article  Google Scholar 

  2. Song, Q., Zhang, Z.J.: Controlled synthesis and magnetic properties of bimagnetic spinel. J Am Chem Soc. 134, 10182–10190 (2012). https://doi.org/10.1021/ja302856z

    Article  Google Scholar 

  3. Skołyszewska, B., Tokarz, W., Przybylski, K., Kakol, Z.: Preparation and magnetic properties of MgZn and MnZn ferrites. Physica C. 387, 290–294 (2003). https://doi.org/10.1016/S0921-4534(03)00696-8

    Article  ADS  Google Scholar 

  4. Henderson, C.M.B., Charnock, J.M., Plant, D.A.: Cation occupancies in Mg, Co, Ni, Zn, Al ferrite spinels: a multi-element EXAFS study. J Phys Condens Matter. 19, (2007). https://doi.org/10.1088/0953-8984/19/7/076214

  5. Aruna, S.T., Mukasyan, A.S.: Combustion synthesis and nanomaterials. Curr Opinion Solid State Mater Sci. 12, 44–50 (2008). https://doi.org/10.1016/j.cossms.2008.12.002

    Article  ADS  Google Scholar 

  6. Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S., Hussain, A.: Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 9, 49–67 (2016). https://doi.org/10.2147/NSA.S99986

  7. Yan, Q.Y., Gambino, R.J., Sampath, S.: Plasma-sprayed MnZn ferrites with insulated fine grains and increased resistivity for high-frequency applications. IEEE Trans Magn. 40, 3346–3351 (2004). https://doi.org/10.1109/TMAG.2004.831658

    Article  ADS  Google Scholar 

  8. Kogias, G., Holz, D., Zaspalis, V.: New MnZn ferrites with high saturation flux density. J Jpn Soc Powder Powder Metall. 61, S201–S203 (2014). https://doi.org/10.2497/jjspm.61.s201

    Article  Google Scholar 

  9. Xing, Q., Peng, Z., Wang, C., Fu, Z., Fu, X.: Doping effect of Y 3 ions on the microstructural and electromagnetic properties of MnZn ferrites. Phys B Condens Matter. 407, 388–392 (2012). https://doi.org/10.1016/j.physb.2011.11.003

    Article  ADS  Google Scholar 

  10. Babayan, V., Kazantseva, N.E., Moučka, R., Sapurina, I., Spivak, Y.M., Moshnikov, V.A.: Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganesezinc ferrite composites. J Magn Magn Mater. 324, 161–172 (2012). https://doi.org/10.1016/j.jmmm.2011.08.002

    Article  ADS  Google Scholar 

  11. Mohammed, E.M., Malini, K.A., Kurian, P., Anantharaman, M.R.: Modification of dielectric and mechanical properties of rubber ferrite composites containing manganese zinc ferrite. Mater Res Bull. 37, 753–768 (2002). https://doi.org/10.1016/S0025-5408(02)00690-6

    Article  Google Scholar 

  12. Lu, A.H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  Google Scholar 

  13. Valenzuela, R.: Novel applications of ferrites. Phys Res Int. 2012, 1–9 (2012). https://doi.org/10.1155/2012/591839

    Article  Google Scholar 

  14. Parekh, K., Upadhyay, R.V., Belova, L., Rao, K.V.: Ternary monodispersed Mn0.5Zn0.5Fe2O 4 ferrite nanoparticles: preparation and magnetic characterization. Nanotechnology. 17, 5970–5975 (2006). https://doi.org/10.1088/0957-4484/17/24/011

    Article  ADS  Google Scholar 

  15. Košak, A., Makovec, D., Žnidaršič, A., Drofenik, M.: Preparation of MnZn-ferrite with microemulsion technique. J Eur Ceram Soc. 24, 959–962 (2004). https://doi.org/10.1016/S0955-2219(03)00524-7

    Article  Google Scholar 

  16. Aiping, H., Huahui, H., Zekun, F.: Effects of SnO2 addition on the magnetic properties of manganese zinc ferrites. J Magn Magn Mater. 301, 331–335 (2006). https://doi.org/10.1016/j.jmmm.2005.07.011

    Article  ADS  Google Scholar 

  17. Fang, X., Wu, R., Peng, L., Sin, J.K.O.: A novel silicon-embedded toroidal power inductor with magnetic core. IEEE Electron Dev Lett. 34, 292–294 (2013). https://doi.org/10.1109/LED.2012.2234077

    Article  ADS  Google Scholar 

  18. Lukovic, M.D., Nikolic, M.V., Blaz, N.V., Zivanov, L.D., Aleksic, O.S., Lukic, L.S.: Mn-Zn ferrite round cable EMI suppressor with deep grooves and a secondary short circuit for different frequency ranges. IEEE Trans Magn. 49, 1172–1177 (2013). https://doi.org/10.1109/TMAG.2012.2219064

    Article  ADS  Google Scholar 

  19. Stergiou, C.A., Zaspalis V.: Cobalt-induced performance instabilities of Mn-Zn ferrite cores. IEEE transaction on magnetics. 54(8),1–8 (2018). https://doi.org/10.1109/TMAG.2018.2835765

  20. Huang, K., Yang, Y., Qin, Y., Yang, G., Yin, D.: Sintering thermodynamics of fields activated microforming and sintering technology for fabricated MnZn ferrite microparts. J Microelectromech Syst. 23, 1389–1395 (2014). https://doi.org/10.1109/JMEMS.2014.2313651

    Article  Google Scholar 

  21. Latorre-Esteves, M., Cortés, A., Torres-Lugo, M., Rinaldi, C.: Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. J Magn Magn Mater. 321, 3061–3066 (2009). https://doi.org/10.1016/j.jmmm.2009.05.023

    Article  ADS  Google Scholar 

  22. Andalib, P., Chen, Y., Harris, V.G.: Concurrent core loss suppression and high permeability by introduction of highly insulating intergranular magnetic inclusions to MnZn ferrite. IEEE Magn Lett. 9, (2017). https://doi.org/10.1109/LMAG.2017.2771391

  23. Sun, K., Wu, G., Wang, B., Zhong, Q., Yang, Y., Yu, Z., Wu, C., Wei, P., Jiang, X., Lan, Z.: Cation distribution and magnetic property of Ti/Sn-substituted manganese-zinc ferrites. J Alloys Compd. 650, 363–369 (2015). https://doi.org/10.1016/j.jallcom.2015.07.258

    Article  Google Scholar 

  24. Kumar, S., Shinde, T., Vasambekar, P.: Engineering high permeability: Mn-Zn and Ni-Zn ferrites. Int J Appl Ceram Technol. 12, 851–859 (2015). https://doi.org/10.1111/ijac.12304

    Article  Google Scholar 

  25. Kalarus, J., Kogias, G., Holz, D., Zaspalis, V.T.: High permeability-high frequency stable MnZn ferrites. J Magn Magn Mater. 324, 2788–2794 (2012). https://doi.org/10.1016/j.jmmm.2012.04.011

    Article  ADS  Google Scholar 

  26. Islam, R., Hakim, M.A., Rahman, M.O., Narayan Das, H., Mamun, M.A.: Study of the structural, magnetic and electrical properties of Gd-substituted Mn-Zn mixed ferrites. J Alloys Compd. 559, 174–180 (2013). https://doi.org/10.1016/j.jallcom.2012.12.080

    Article  Google Scholar 

  27. Wei, Z., Zheng, P., Zheng, L., Shao, L., Hu, J., Zhou, J., Qin, H.: Effect of TiO2and Nb2O5 additives on the magnetic properties of cobalt-modified MnZn ferrites. J Mater Sci Mater Electron. 27, 6048–6052 (2016). https://doi.org/10.1007/s10854-016-4529-y

    Article  Google Scholar 

  28. Fujita, A., Gotoh, S.: Temperature dependence of core loss in co-substituted MnZn ferrites. J Appl Phys. 93, 7477–7479 (2003). https://doi.org/10.1063/1.1557952

    Article  ADS  Google Scholar 

  29. Wang, S.F., Hsu, Y.F., Chen, C.H.: Effects of Nb2O5, TiO2, SiO2, and CaO additions on the loss characteristics of Mn-Zn ferrite. J Electroceram. 33, 172–179 (2014). https://doi.org/10.1007/s10832-014-9943-z

    Article  Google Scholar 

  30. Baguley, C.A., Madawala, U.K., Carsten, B.: The influence of remanence on magnetostrictive vibration and hysteresis in Mn-Zn ferrite cores. IEEE Trans Magn. 48, 1844–1850 (2012). https://doi.org/10.1109/TMAG.2011.2174251

    Article  ADS  Google Scholar 

  31. Tsakaloudi, V., Kogias, G., Zaspalis, V.T.: Process and material parameters towards the design of fast firing cycles for high permeability MnZn ferrites. J Alloys Compd. 588, 222–227 (2014). https://doi.org/10.1016/j.jallcom.2013.11.047

    Article  Google Scholar 

  32. Töpfer, J., Angermann, A.: Complex additive systems for Mn-Zn ferrites with low power loss. J Appl Phys. 117, (2015). https://doi.org/10.1063/1.4918692

  33. Marracci, M., Tellini, B.: Hysteresis losses of minor loops versus temperature in MnZn ferrite. IEEE Trans Magn. 49, 2865–2869 (2013). https://doi.org/10.1109/TMAG.2012.2219877

    Article  ADS  Google Scholar 

  34. Nien, H.H., Huang, C.K., Wang, M.Y., Lin, C.W., Changchien, S.K.: Estimation of Eddy-current loss for MnZn ferrite cores. Adv Mater Res. 382, 204–209 (2011). https://doi.org/10.4028/www.scientific.net/amr.382.204

    Article  Google Scholar 

  35. Sun, B., Chen, F., Yang, W., Shen, H., Xie, D.: Effects of nano-TiO2 and normal size TiO2 additions on the microstructure and magnetic properties of manganese-zinc power ferrites. J Magn Magn Mater. 349, 180–187 (2014). https://doi.org/10.1016/j.jmmm.2013.09.006

    Article  ADS  Google Scholar 

  36. Fiorillo, F., Beatrice, C., Bottauscio, O., Carmi, E.: Eddy-current losses in Mn-Zn ferrites. IEEE Trans Magn. 50, (2014). https://doi.org/10.1109/TMAG.2013.2279878

  37. Zaspalis, V.T., Antoniadis, E., Papazoglou, E., Tsakaloudi, V., Nalbandian, L., Sikalidis, C.A.: The effect of Nb2O5 dopant on the structural and magnetic properties of MnZn-ferrites. J Magn Magn Mater. 250, 98–109 (2002). https://doi.org/10.1016/S0304-8853(02)00367-0

    Article  ADS  Google Scholar 

  38. Kogias G., Zaspalis V.: New MnZn Ferrite with Low Losses at 500 kHz over a Broad Temperature Range.Physics Procedia. 75, 1286–1293 (2015). https://doi.org/10.1016/j.phpro.2015.12.143

  39. Ying, Y., Gong, Y., Liu, D., Li, W., Yu, J., Jiang, L., Che, S.: Effect of MoO3 addition on the magnetic properties and complex impedance of Mn–Zn ferrites with high Bs and high initial permeability. J Supercond Nov Magn. 30, 2129–2134 (2017). https://doi.org/10.1007/s10948-017-4002-z

    Article  Google Scholar 

  40. Mitrović, N.S., Zlatkov, B.S., Nikolić, M.V., Maričić, A.M., Aleksić, O.S., Djukić, S.R., Danninger, H.: Soft magnetic properties of MnZn ferrites prepared by powder injection moulding. Sci Sinter. 44, 355–364 (2012). https://doi.org/10.2298/SOS1203355M

    Article  Google Scholar 

  41. Patel, J., Parekh, K., Upadhyay, R.V.: Performance of Mn-Zn ferrite magnetic fluid in a prototype distribution transformer under varying loading conditions. Int J Therm Sci. 114, 64–71 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.12.011

    Article  Google Scholar 

  42. Welch, R.G., Neamtu, J., Rogalski, M.S., Palmer, S.B.: Polycrystalline MnZn ferrite films prepared by pulsed laser deposition. Mater Lett. 29, 199–203 (1996). https://doi.org/10.1016/S0167-577X(96)00146-2

    Article  Google Scholar 

  43. Maisnam, M., Phanjoubam, S.: Frequency dependence of electrical and magnetic properties of Li-Ni-Mn-Co ferrites. Solid State Commun. 152, 320–323 (2012). https://doi.org/10.1016/j.ssc.2011.11.019

    Article  ADS  Google Scholar 

  44. Azadmanjiri, J.: Preparation of Mn-Zn ferrite nanoparticles from chemical sol-gel combustion method and the magnetic properties after sintering. J Non-Cryst Solids. 353, 4170–4173 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.06.046

    Article  ADS  Google Scholar 

  45. Winiarska, K., Klimkiewicz, R., Tylus, W., Sobianowska-Turek, A., Winiarski, J., Szczygieł, B., Szczygieł, I.: Study of the catalytic activity and surface properties of manganese-zinc ferrite prepared from used batteries. J Chem. 2019, 1–14 (2019). https://doi.org/10.1155/2019/5430904

    Article  Google Scholar 

  46. Yan, S., Ling, W., Zhou, E.: Rapid synthesis of Mn0.65Zn0.35Fe2O 4/SiO2 homogeneous nanocomposites by modified sol-gel auto-combustion method. J Cryst Growth. 273, 226–233 (2004). https://doi.org/10.1016/j.jcrysgro.2004.08.025

    Article  ADS  Google Scholar 

  47. Duan, Z., Tao, X., Xu, J.: Characterization of as-deposited and sintered Mn0.5Zn0.5Fe2O4 films formed by sol-gel. Ferroelectrics. 528, 131–138 (2018). https://doi.org/10.1080/00150193.2018.1449440

    Article  Google Scholar 

  48. Masthoff, I.C., Gutsche, A., Nirschl, H., Garnweitner, G.: Oriented attachment of ultra-small Mn(1-x)ZnxFe2O4 nanoparticles during the non-aqueous sol-gel synthesis. CrystEngComm. 17, 2464–2470 (2015). https://doi.org/10.1039/c4ce02068e

    Article  Google Scholar 

  49. Winiarska, K., Szczygieł, I., Klimkiewicz, R.: Manganese-zinc ferrite synthesis by the sol-gel autocombustion method. Effect of the precursor on the ferrite’s catalytic properties. Ind Eng Chem Res. 52, 353–361 (2013). https://doi.org/10.1021/ie301658q

    Article  Google Scholar 

  50. Meng, Y.Y., Liu, Z.W., Dai, H.C., Yu, H.Y., Zeng, D.C., Shukla, S., Ramanujan, R.V.: Structure and magnetic properties of Mn (Zn) Fe 2-xRE xO 4 ferrite nano-powders synthesized by co-precipitation and refluxing method. Powder Technol. 229, 270–275 (2012). https://doi.org/10.1016/j.powtec.2012.06.050

    Article  Google Scholar 

  51. Ameen Ramiza, F., Ajmal, S.K., Khan, M.B., Nasim, A., Jamil, Y., Kashif, K., Amira, S.: Effect of UV radiations to control particle size of Mn-Zn spinel ferrite nano-particles. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing (2016)

  52. Ciocarlan, R.G., Pui, A., Gherca, D., Virlan, C., Dobromir, M., Nica, V., Craus, M.L., Gostin, I.N., Caltun, O., Hempelman, R., Cool, P.: Quaternary M 0.25 Cu 0.25 Mg 0.5 Fe 2 O 4 (M = Ni, Zn, Co, Mn) ferrite oxides: synthesis, characterization and magnetic properties. Mater Res Bull. 81, 63–70 (2016). https://doi.org/10.1016/j.materresbull.2016.05.001

    Article  Google Scholar 

  53. Irfan, S., Ajaz-Un-Nabi, M., Jamil, Y., Amin, N.: Synthesis of Mn1-xZnxFe2O4 ferrite powder by co-precipitation method. In: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing (2014)

  54. Dobak, S., Beatrice, C., Fiorillo, F., Tsakaloudi, V., Ragusa, C.: Magnetic loss decomposition in Co-doped Mn-Zn ferrites. IEEE Magn Lett. 10, (2019). https://doi.org/10.1109/LMAG.2018.2881108

  55. Srivastava, R.P., Pandey, O.P.:Synthesis and Characterization of Mn-Zn Ferrite Nanomaterials by Chemical Co-precipitation Method, M. Tech Thesis, Thapar University, (2008)

  56. Kandpal, N.D., Sah, N., Loshali, R., Joshi, R., Prasad, J.: Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res. 73, 87–90 (2014)

    Google Scholar 

  57. Hua, F., Yin, C., Zhang, H., Suo, Q., Wang, X., Peng, H.: Direct preparation of the nanocrystalline MnZn ferrites by using oxalate as precipitant. J Mater Sci Chem Eng. 03, 23–29 (2015). https://doi.org/10.4236/msce.2015.312005

    Article  Google Scholar 

  58. Asif Iqbal, M., Misbah-Ul-Islam, Ali, I., Khan, H.M., Mustafa, G., Ali, I.: Study of electrical transport properties of Eu +3 substituted MnZn-ferrites synthesized by co-precipitation technique. Ceram Int. 39, 1539–1545 (2013). https://doi.org/10.1016/j.ceramint.2012.07.104

    Article  Google Scholar 

  59. Mathur, P., Thakur, A., Singh, M.: Effect of nanoparticles on the magnetic properties of Mn-Zn soft ferrite. J Magn Magn Mater. 320, 1364–1369 (2008). https://doi.org/10.1016/j.jmmm.2007.11.008

    Article  ADS  Google Scholar 

  60. Mathur, P., Thakur, A., Singh, M.: Study of low-temperature sintered nano-crystallite Mn-Cu-Zn ferrite prepared by co-precipitation method. Modern Physics Letters B. 21, 1425–1430 (2007). https://doi.org/10.1142/S0217984907013651

  61. Phong, P.T., Nam, P.H., Manh, D.H., Lee, I.J.: Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy. J Magn Magn Mater. 433, 76–83 (2017). https://doi.org/10.1016/j.jmmm.2017.03.001

    Article  ADS  Google Scholar 

  62. Makovec, D., Drofenik, M., Žnidaršič, A.: Hydrothermal synthesis of manganese zinc ferrite powders from oxides. J Am Ceram Soc. 82, 1113–1120 (2004). https://doi.org/10.1111/j.1151-2916.1999.tb01884.x

    Article  Google Scholar 

  63. Drofenik, M., Žnidaršič, A., Kristl, M., Košak, A., Makovec, D.: Dispersant-assisted hydrothermal synthesis of MnZn ferrites from raw oxides. J Mater Sci. 38, 3063–3067 (2003). https://doi.org/10.1023/A:1024704625296

    Article  ADS  Google Scholar 

  64. Rozman, M., Drofenik, M.: Hydrothermal synthesis of manganese zinc ferrites. J Am Ceram Soc. 78, 2449–2455 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08684.x

    Article  Google Scholar 

  65. Thakur, A., Singh, M.: Ferrite By Citrate Precursor Method. Ceram Int. 29, 505–511 (2003)

    Article  Google Scholar 

  66. Sanatombi, S., Sumitra, S., Ibetombi, S.: Influence of sintering on the structural, electrical, and magnetic properties of Li–Ni–Mn–Zn ferrite synthesized by citrate precursor method. Iran J Sci Technol Trans A: Sci. 42, 2397–2406 (2018). https://doi.org/10.1007/s40995-017-0405-8

    Article  Google Scholar 

  67. Mathur, P., Thakur, A. and Singh, M.: A study of nano-structured Zn – Mn soft spinel ferrites by the citrate precursor method. Phys. Scr. 77,045701 (2008). https://doi.org/10.1088/0031-8949/77/4/045701

  68. Praveena, K., Sadhana, K., Virk, H.S.: Structural and magnetic properties of Mn-Zn ferrites synthesized by microwave-hydrothermal process. Solid State Phenom. 232, 45–64 (2015). https://doi.org/10.4028/www.scientific.net/ssp.232.45

    Article  Google Scholar 

  69. Mirshekari, G.R., Daee, S.S., Mohseni, H., Torkian, S., Ghasemi, M., Ameriannejad, M., Hoseinizade, M., Pirnia, M., Pourjafar, D., Pourmahdavi, M., Gheisari, K.: Structure and magnetic properties of Mn-Zn ferrite synthesized by glycine-nitrate auto-combustion process. Adv Mater Res. 409, 520–525 (2011). https://doi.org/10.4028/www.scientific.net/amr.409.520

    Article  Google Scholar 

  70. Anwar, H., Maqsood, A.: Effect of sintering temperature on structural, electrical and dielectric parameters of Mn-Zn nano ferrites. Key Eng Mater. 510–511, 163–170 (2012). https://doi.org/10.4028/www.scientific.net/kem.510-511.163

    Article  Google Scholar 

  71. Thota, S., Kashyap, S.C., Sharma, S.K., Reddy, V.R.: Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: a Raman, Mössbauer, X-ray diffraction and electron spectroscopy study. Mater Sci Eng B. 206, 69–78 (2016). https://doi.org/10.1016/j.mseb.2016.01.002

    Article  Google Scholar 

  72. Ding, C., Yin, W., Cao, L., Zeng, Y.: Materials science in semiconductor processing synthesis of manganese – zinc ferrite nanopowders prepared by a microwave-assisted auto-combustion method : influence of sol – gel chemistry on microstructure $. Mater Sci Semicond Process. 23, 50–57 (2014). https://doi.org/10.1016/j.mssp.2014.02.024

    Article  Google Scholar 

  73. Arulmurugan, R., Vaidyanathan, G., Sendhilnathan, S., Jeyadevan, B.: Mn – Zn ferrite nanoparticles for ferrofluid preparation : Study on thermal – magnetic properties. Journal of Magnetism and Magnetic Materials. 298, 83–94 (2006). https://doi.org/10.1016/j.jmmm.2005.03.002

  74. Hu, P., Pan, D., Zhang, S., Tian, J., Volinsky, A.A.: Mn – Zn soft magnetic ferrite nanoparticles synthesized from spent alkaline Zn – Mn batteries. J Alloys Compd. 509, 3991–3994 (2011). https://doi.org/10.1016/j.jallcom.2010.12.204

    Article  Google Scholar 

  75. Töpfer, J., Angermann, A.: Nanocrystalline magnetite and Mn-Zn ferrite particles via the polyol process: synthesis and magnetic properties. Mater Chem Phys. 129, 337–342 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.025

    Article  Google Scholar 

  76. Gabal, M.A., Al-Luhaibi, R.S., Al Angari, Y.M.: Mn-Zn nano-crystalline ferrites synthesized from spent Zn-C batteries using novel gelatin method. J Hazard Mater. 246–247, 227–233 (2013). https://doi.org/10.1016/j.jhazmat.2012.12.026

    Article  Google Scholar 

  77. Mallesh, S., Kavita, S., Gopalan, R., Srinivas, V.: On the question of thermal stability and magnetic properties of Mn0.6Zn0.4Fe2O4 nanoparticles prepared by sol-gel method. IEEE Trans Magn. 50, 1–4 (2014). https://doi.org/10.1109/tmag.2014.2327694

    Article  Google Scholar 

  78. Phong, P.T., Nam, P.H., Manh, D.H., Tung, D.K., Lee, I.J., Phuc, N.X.: Studies of the magnetic properties and specific absorption of Mn0.3Zn0.7Fe2O4 nanoparticles. J Electron Mater. 44, 287–294 (2015). https://doi.org/10.1007/s11664-014-3463-0

    Article  ADS  Google Scholar 

  79. Rath, C., Anand, S., Das, R.P., Sahu, K.K., Kulkarni, S.D., Date, S.K., Mishra, N.C.: Dependence on cation distribution of particle size, lattice parameter, and magnetic properties in nanosize Mn-Zn ferrite. J Appl Phys. 91, 2211–2215 (2002). https://doi.org/10.1063/1.1432474

    Article  ADS  Google Scholar 

  80. Ravinder, D., Kumar, K.V.: Dielectric behaviour of erbium substituted Mn – Zn ferrites. Bull. Mater. Sci. 24(5), 505–509 (2001). https://doi.org/10.1007/BF02706722

  81. Nalbandian, L., Delimitis, A., Zaspalis, V.T., Deliyanni, E.A., Bakoyannakis, D.N.: Hydrothermally prepared nanocrystalline Mn – Zn ferrites : Synthesis and characterization. Microporous and Mesoporous Materials. 114, 465–473 (2008). https://doi.org/10.1016/j.micromeso.2008.01.034

  82. Hu, P., Yang, H., Pan, D., Wang, H., Tian, J., Zhang, S., Wang, X., Volinsky, A.A.: Heat treatment effects on microstructure and magnetic properties of Mn – Zn ferrite powders. J Magn Magn Mater. 322, 173–177 (2010). https://doi.org/10.1016/j.jmmm.2009.09.002

    Article  ADS  Google Scholar 

  83. Li, M., Liu, X., Xu, T., Nie, Y., Li, H., Zhang, C.: Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method. J Magn Magn Mater. (2017). https://doi.org/10.1016/j.jmmm.2017.04.015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Thakur.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Taneja, S., Sindhu, D. et al. Manganese Zinc Ferrites: a Short Review on Synthesis and Characterization. J Supercond Nov Magn 33, 1569–1584 (2020). https://doi.org/10.1007/s10948-020-05489-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05489-z

Keywords

Navigation