Skip to main content
Log in

Effect of Interactions and Non-uniform Magnetic States on the Magnetization Reversal of Iron Nanowire Arrays

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Ordered ferromagnetic nanowire arrays are widely studied due to the diversity of possible applications. However, there is still no complete understanding of the relation between the array’s parameters and its magnetic behavior. The effect of vortex states on the magnetization reversal of large-diameter nanowires is of particular interest. Here, we compare analytical and micromagnetic models with experimental results for three arrays of iron nanowires with diameters of 33, 52 and 70 nm in order to find the balance between the number of approximations and resources used for the calculations. The influence of the vortex states and the effect of interwire interactions on the remagnetization curves are discussed. It has been found that 7 nanowires treated by a mean field model are able to reproduce well the reversal behavior of the whole array in the case of large diameter nanowires. Vortex states tend to decrease the influence of the structural inhomogeneities on reversal process and thus lead to the increased predictability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Demirel, S., Oz, E., Altin, E., Altin, S., Bayri, A., Kaya, P., Turan, S., Avci, S.: Growth mechanism and magnetic and electrochemical properties of na0.44mno2 nanorods as cathode material for na-ion batteries. Mater. Charact. 105, 104–112 (2015)

    Google Scholar 

  2. Hekmat, F., Shahrokhian, S., Rahimi, S.: 3d flower-like binary nickel cobalt oxide decorated coiled carbon nanotubes directly grown on nickel nanocones and binder-free hydrothermal carbons for advanced asymmetric supercapacitors. Nanoscale 11(6), 2901–2915 (2019)

    Google Scholar 

  3. Su, Y., Gao, M., Meng, X., Chen, Y., Zhou, Q., Li, L., Feng, Y.: Synthesis of in-doped ga2o3 zigzag-shaped nanowires and optical properties. J. Phys. Chem. Solids 70(7), 1062–1065 (2009)

    ADS  Google Scholar 

  4. Wierzbicki, M., Barnaś, J., Swirkowicz, R.: Zigzag nanoribbons of two-dimensional silicene-like crystals: magnetic, topological and thermoelectric properties. J. Phys. Condensed Matter. 27(48), 485301 (2015)

    Google Scholar 

  5. Parkin, S., Hayashi, M., Thomas, L.: Magnetic domain-wall racetrack memory. Science 320(5873), 190–194 (2008)

    ADS  Google Scholar 

  6. Staňo, M., Fruchart, O.: Magnetic nanowires and nanotubes. In: Handbook of Magnetic Materials, vol. 27, pp 155–267. Elsevier (2018)

  7. Vázquez, M.: Magnetic nano-and microwires. Elsevier (2015)

  8. Zeng, H., Skomski, R., Menon, L., Liu, Y., Bandyopadhyay, S., Sellmyer, D.J.: Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B 65(13), 134426 (2002)

    ADS  Google Scholar 

  9. Ortega, E., Reddy, S.M., Betancourt, I., Roughani, S., Stadler, B.J.H., Ponce, A.: Magnetic ordering in 45 nm-diameter multisegmented fega/cu nanowires Single nanowires and arrays. J. Mater. Chem. C 5(30), 7546–7552 (2017)

    Google Scholar 

  10. Ishii, Y., Sato, M.: Magnetic behavior of a film with columnar structure. Journal of Magnetism and Magnetic Materials 82(2-3), 309–312 (1989)

    ADS  Google Scholar 

  11. Sun, L., Hao, Y., Chien, C -L, Searson, P.C.: Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 49(1), 79–102 (2005)

    Google Scholar 

  12. Goncharova, A.S., Sotnichuk, S.V., Semisalova, A.S., Kiseleva, T.Y., Sergueev, I., Herlitschke, M., Napolskii, K.S., Eliseev, A.A.: Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects. J. Sol-Gel Sci. Technol. 81(2), 327–332 (2017)

    Google Scholar 

  13. Schlesinger, M., Paunovic, M.: Modern Electroplating, vol. 55. Wiley, Hoboken (2011)

    Google Scholar 

  14. Ivanov, Y.P., Vázquez, M, Chubykalo-Fesenko, O.: Magnetic reversal modes in cylindrical nanowires. J. Phys. D Appl. Phys. 46(48), 485001 (2013)

    Google Scholar 

  15. Schaefer, S., Felix, E -M, Muench, F., Antoni, M., Lohaus, C., Brötz, J, Kunz, U., Gärtner, I, Ensinger, W.: Nico nanotubes plated on pd seeds as a designed magnetically recollectable catalyst with high noble metal utilisation. RSC advances 6(74), 70033–70039 (2016)

    ADS  Google Scholar 

  16. Pitzschel, K., Bachmann, J., Martens, S., Montero-Moreno, J.M., Kimling, J., Meier, G., Escrig, J., Nielsch, K., Görlitz, D: Magnetic reversal of cylindrical nickel nanowires with modulated diameters. J. Appl. Phys. 109(3), 033907 (2011)

    ADS  Google Scholar 

  17. Ruiz-Clavijo, A., Ruiz-Gomez, S., Caballero-Calero, O., Perez, L., Martin-Gonzalez, M.: Tailoring magnetic anisotropy at will in 3d interconnected nanowire networks. Physica Status Solidi (RRL)–Rapid Research Letters 13(10), 1900263 (2019)

    ADS  Google Scholar 

  18. C Bran, E., Berganza, J.A., Fernandez-Roldan, E.M., Palmero, J., Meier, E., Calle, M., Jaafar, M., Foerster, L., Aballe, A., et al.: Fraile Rodriguez Magnetization ratchet in cylindrical nanowires. ACS Nano 12(6), 5932–5939 (2018)

    Google Scholar 

  19. D Wolf, N., Biziere, S., Sturm, D., Reyes, T., Wade, T., Niermann, J., Krehl, B., Warot-Fonrose, B., Büchner, E., et al.: Snoeck Holographic vector field electron tomography of three-dimensional nanomagnets. Commun. Phys. 2(1), 87 (2019)

    Google Scholar 

  20. Biziere, N., Gatel, C., Lassalle-Balier, R., Clochard, M.C., Wegrowe, J.E., Snoeck, E.: Imaging the fine structure of a magnetic domain wall in a ni nanocylinder. Nano Lett. 13(5), 2053–2057 (2013)

    ADS  Google Scholar 

  21. Forster, H., Schrefl, T., Suess, D., Scholz, W., Tsiantos, V., Dittrich, R., Fidler, J.: Domain wall motion in nanowires using moving grids. J. Appl. Phys. 91(10), 6914–6919 (2002)

    ADS  Google Scholar 

  22. Wieser, R., Nowak, U., Usadel, K.D.: Domain wall mobility in nanowires: Transverse versus vortex walls. Phys. Rev. B. 69(6), 064401 (2004)

    ADS  Google Scholar 

  23. Thiaville, A., Nakatani, Y.: Domain-wall dynamics in nanowires and nanostrips. In: Spin Dynamics in Confined Magnetic Structures III, pp 161–205. Springer (2006)

  24. Ebels, U., Radulescu, A., Henry, Y., Piraux, L., Ounadjela, K.: Spin accumulation and domain wall magnetoresistance in 35 nm co wires. Phys. Rev. Lett. 84(5), 983 (2000)

    ADS  Google Scholar 

  25. Da Col, S., Jamet, S., Staňo, M., Trapp, B., Le Denmat, S., Cagnon, L., Toussaint, J.C., Fruchart, O.: Nucleation, imaging, and motion of magnetic domain walls in cylindrical nanowires. Appl. Phys. Lett. 109(6), 062406 (2016)

    ADS  Google Scholar 

  26. Staňo, M, Jamet, S., Toussaint, J.C., Bochmann, S., Bachmann, J., Masseboeuf, A., Gatel, C., Fruchart, O.: Probing domain walls in cylindrical magnetic nanowires with electron holography. In: Journal of Physics: Conference Series, vol. 903, p 012055. IOP Publishing (2017)

  27. Thiaville, A., García, J.M., Miltat, J., Schrefl, T., et al. : Micromagnetic study of Bloch-point-mediated vortex core reversal. Phys. Rev. B. 67(9), 094410 (2003)

    ADS  Google Scholar 

  28. Fangohr, H., Bordignon, G., Franchin, M., Knittel, A., de Groot, P.A.J., Fischbacher, T.: A new approach to (quasi) periodic boundary conditions in micromagnetics: The macrogeometry. J. Appl. Phys. 105(7), 07D529 (2009)

    Google Scholar 

  29. Vock, S., Hengst, C., Sasvári, Z., Schäfer, R., Schultz, L., Neu, V.: The role of the inhomogeneous demagnetizing field on the reversal mechanism in nanowire arrays. J. Phys. D Appl. Phys. 50(47), 475002 (2017)

    ADS  Google Scholar 

  30. Da Col, S., Darques, M., Fruchart, O., Cagnon, L.: Reduction of magnetostatic interactions in self-organized arrays of nickel nanowires using atomic layer deposition. Appl. Phys. Lett. 98(11), 112501 (2011)

    ADS  Google Scholar 

  31. Wang, T., Wang, Y., Fu, Y., Hasegawa, T., Oshima, H., Itoh, K., Nishio, K., Masuda, H., Li, F.S., Saito, H., et al.: Magnetic behavior in an ordered co nanorod array. Nanotechnology 19(45), 455703 (2008)

    ADS  Google Scholar 

  32. Bochmann, S., Döhler, D, Trapp, B., Staňo, M, Fruchart, O., Bachmann, J.: Preparation and physical properties of soft magnetic nickel-cobalt three-segmented nanowires. J. Appl. Phys. 124(16), 163907 (2018)

    ADS  Google Scholar 

  33. Vivas, L.G., Escrig, J., Trabada, D.G., Badini-Confalonieri, G.A., Vázquez, M: Magnetic anisotropy in ordered textured co nanowires. Appl. Phys. Lett. 100(25), 252405 (2012)

    ADS  Google Scholar 

  34. Lavin, R., Denardin, J.C., Escrig, J., Altbir, D., Cortés, A., Gómez, H.: Angular dependence of magnetic properties in ni nanowire arrays. J. Appl. Phys. 106(10), 103903 (2009)

    ADS  Google Scholar 

  35. Egolf, P.W., Shamsudhin, N., Pané, S., Vuarnoz, D., Pokki, J., Pawlowski, A.-G., Tsague, P., de Marco, B., Bovy, W., Tucev, S., et al. : Hyperthermia with rotating magnetic nanowires inducing heat into tumor by fluid friction. J. Appl. Phys. 120(6), 064304 (2016)

    ADS  Google Scholar 

  36. Leulmi, S., Chauchet, X., Morcrette, M., Ortiz, G., Joisten, H., Sabon, P., Livache, T., Hou, Y., Carrière, M., Lequien, S., et al.: Triggering the apoptosis of targeted human renal cancer cells by the vibration of anisotropic magnetic particles attached to the cell membrane. Nanoscale 7(38), 15904–15914 (2015)

    ADS  Google Scholar 

  37. Bonilla, F.J., Lacroix, L -M, Blon, T.: Magnetic ground states in nanocuboids of cubic magnetocrystalline anisotropy. J. Magn. Magn. Mater. 428, 394–400 (2017)

    ADS  Google Scholar 

  38. Lillo, M., Losic, D.: Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology. J. Membr. Sci. 327(1-2), 11–17 (2009)

    Google Scholar 

  39. Roslyakov, I.V., Koshkodaev, D.S., Eliseev, A.A., Hermida-Merino, D., Ivanov, V.K., Petukhov, A.V., Napolskii, K.S.: Growth of porous anodic alumina on low-index surfaces of al single crystals. J. Phys. Chem. C 121(49), 27511–27520 (2017)

    Google Scholar 

  40. Rodríguez-Carvajal, J.: An introduction to the program fullprof 2000. Version July, p. 54 (2001)

  41. Zolotoyabko, E.: Determination of the degree of preferred orientation within the March–Dollase approach. J. Appl. Crystallography 42(3), 513–518 (2009)

    Google Scholar 

  42. Hertel, R., Kákay, A.: Analytic form of transverse head-to-head domain walls in thin cylindrical wires. J. Magn. Magn. Mater. 379, 45–49 (2015)

    ADS  Google Scholar 

  43. Landeros, P., Allende, S., Escrig, J., Salcedo, E., Altbir, D., Vogel, E.E.: Reversal modes in magnetic nanotubes. Appl. Phys. Lett. 90(10), 102501 (2007)

    ADS  Google Scholar 

  44. Jamet, S., Rougemaille, N., Toussaint, J.-C., Fruchart, O.: Head-to-head domain walls in one-dimensional nanostructures: An extended phase diagram ranging from strips to cylindrical wires. In: Magnetic Nano-and Microwires, pp 783–811. Elsevier (2015)

  45. Fredkin, D.R., Koehler, T.R.: Hybrid method for computing demagnetizing fields. IEEE Trans. Magn. 26(2), 415–417 (1990)

    ADS  Google Scholar 

  46. Fischbacher, T., Franchin, M., Bordignon, G., Fangohr, H.: A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations Nmag. IEEE Transactions on Magnetics 43(6), 2896–2898 (2007)

    ADS  Google Scholar 

  47. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, Hoboken (2011)

    Google Scholar 

  48. Ivanov, Yurii P, Chubykalo-Fesenko, O.: Micromagnetic simulations of cylindrical magnetic nanowires. In: Magnetic Nano-and Microwires, pp 423–448. Elsevier (2015)

  49. Zighem, F., Maurer, T., Ott, F., Chaboussant, G.: Dipolar interactions in arrays of ferromagnetic nanowires: A micromagnetic study. J. Appl. Phys. 109(1), 013910 (2011)

    ADS  Google Scholar 

  50. Panagiotopoulos, I., Fang, W., Ott, F., Boué, F., Aït-Atmane, K., Piquemal, J.-Y., Viau, G.: Packing fraction dependence of the coercivity and the energy product in nanowire based permanent magnets. J. Appl. Phys. 114(14), 143902 (2013)

    ADS  Google Scholar 

  51. Samardak, A.Y., Jeon, Y.S., Kim, S.H., Davydenko, A.V., Ognev, A.V., Samardak, A.S., Kim, Y.K., et al.: Magnetization reversal of ferromagnetic nanosprings affected by helical shape. Nanoscale 10(43), 20405–20413 (2018)

    Google Scholar 

  52. Zighem, F., Mercone, S.: Magnetization reversal behavior in complex shaped co nanowires: A nanomagnet morphology optimization. J. Appl. Phys. 116(19), 193904 (2014)

    ADS  Google Scholar 

  53. Nguyen Vien, G., Rioual, S., Gloaguen, F., Rouvellou, B., Lescop, B.: Study of the magnetization behavior of ferromagnetic nanowire array Existence of growth defects revealed by micromagnetic simulations. J. Magn. Magn. Mater. 401, 378–385 (2016)

    ADS  Google Scholar 

  54. Vidal, E.V., Ivanov, Y.P., Mohammed, H., Kosel, J.: A detailed study of magnetization reversal in individual ni nanowires. Appl. Phys. Lett. 106(3), 032403 (2015)

    ADS  Google Scholar 

  55. Mercone, S., Zighem, F., Leridon, B., Gaul, A., Schoenstein, F., Jouini, N.: Morphology control of the magnetization reversal mechanism in co80ni20 nanomagnets. J. Appl. Phys. 117(20), 203905 (2015)

    ADS  Google Scholar 

  56. Li, Hongjian, Wu, Q., Yi, Peng, Xu, H., Zhang, J., Yue, M.: Magnetic properties and magnetization reversal in co nanowires with different morphology. J. Magn. Magn. Mater. 469, 203–210 (2019)

    ADS  Google Scholar 

  57. Panagiotopoulos, I.: Athermal exploration of kagome artificial spin ice states by rotating field protocols. J. Magn. Magn. Mater. 384, 70–74 (2015)

    ADS  Google Scholar 

  58. Dobosz, I., Gumowska, W., Czapkiewicz, M.: Synthesis and magnetic properties of fe nanowire arrays electrodeposited in self-ordered alumina membrane. Arch. Metall. Mater. 64 (2019)

Download references

Acknowledgments

The authors are thankful to the Research Park of St. Petersburg State University and the staff of the resource centers “Nanotechnologies” (http://nano.spbu.ru) and “X-ray diffraction methods of research” (http://xrd.spbu.ru) V. Kalganov and I. Kasatkin, respectively, for their invaluable contribution in obtaining experimental data. We are grateful to G. A. Valkovskiy for the help with the analysis of XRD measurements. The computing resources of the Resource Center “Computing Center of St. Petersburg State University” (http://www.cc.spbu.ru/) were used for carrying out the micromagnetic calculations. A part of them was performed with the help of the data center PIK NRC “Kurchatov Institute” – PNPI. In addition, the authors thank the developers of the Magic Plot software (https://magicplot.com/), in which the most part of the data was processed and plotted. The authors declare that there is no conflict of interest regarding the publication of this article.

Funding

This work was supported by Russian Science Foundation (project no. 18-72-00011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Dubitskiy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubitskiy, I.S., Elmekawy, A.H.A., Iashina, E.G. et al. Effect of Interactions and Non-uniform Magnetic States on the Magnetization Reversal of Iron Nanowire Arrays. J Supercond Nov Magn 34, 539–549 (2021). https://doi.org/10.1007/s10948-020-05711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05711-y

Keywords

Navigation