Skip to main content
Log in

London Moment, London’s Superpotential, Nambu-Goldstone Mode, and Berry Connection from Many-Body Wave Functions

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Although the standard theory of superconductivity based on the BCS theory is a successful one, there are several experimental results that indicate the necessity for fundamental revisions. One of them is the mass in the London moment. Experiments indicate the mass in the London moment is the free electron mass although the BCS theory and its extension predict it to be an effective mass. We show that this discrepancy is lifted if we install the London’s superpotential in the theory, and identify it as the Berry phase arising from the many-body wave functions. Then, the induced current by the applied magnetic field becomes a stable current calculated using the free energy in contrast to the linear response current assumed in the standard theory which yields the Nambu-Goldstone mode. The Nambu-Goldstone mode arising from the breakdown of the global U(1) gauge invariance in the standard theory is replaced by the collective mode arising from the Berry connection. Then, the free electron mass appears in the London moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meissner, W., Ochsenfeld, R.: Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21, 787 (1933)

    Article  ADS  Google Scholar 

  2. Keesom, W., Kok, J.: Measurements of the latent heat of thallium connected with the transition, in a constant external magnetic field, from the supraconductive to the non-supraconductive state. Physica 1(1), 503 (1934). https://doi.org/10.1016/S0031-8914(34)90059-8. http://www.sciencedirect.com/science/article/pii/S0031891434900598

    Article  ADS  Google Scholar 

  3. Keesom, W., Van Laer, P.: Measurements of the latent heat of tin in passing from the supraconductive to the non-supraconductive state. Physica 3(6), 371 (1936). https://doi.org/10.1016/S0031-8914(36)80002-0. http://www.sciencedirect.com/science/article/pii/S0031891436800020

    Article  ADS  Google Scholar 

  4. Keesom, W., van Laer, P.: Measurements of the latent heat of tin while passing from the superconductive to the non-superconductive state at constant temperature. Physica 4(6), 487 (1937). https://doi.org/10.1016/S0031-8914(37)80081-6. http://www.sciencedirect.com/science/article/pii/S0031891437800816

    Article  ADS  Google Scholar 

  5. van Laer, P.H., Keesom, W.H.: On the reversibility of the transition processs between the superconductive and the normal state. Physica 5, 993 (1938)

    Article  ADS  Google Scholar 

  6. Hirsch, J.E.: Momentum of superconducting electrons and the explanation of the Meissner effect. Phys. Rev. B 95, 014503 (2017)

    Article  ADS  Google Scholar 

  7. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Exsp. Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  8. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Hirsch, J.E.: Entropy generation and momentum transfer in the superconductor-normal and normal-superconductor phase transitions and the consistency of the conventional theory of superconductivity. International Journal of Modern Physics B 32, 1850158 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Hirsch, J.E.: Inconsistency of the conventional theory of superconductivity. EPL 130, 17006 (2020)

    Article  ADS  Google Scholar 

  11. Koizumi, H.: Reversible superconducting-normal phase transition in a magnetic field and the existence of topologically-protected loop currents that appear and disappear without Joule heating. EPL 131(3), 37001 (2020)

    Article  ADS  Google Scholar 

  12. London, F.: Superfluids, vol. 1. Wiley, New York (1950)

    MATH  Google Scholar 

  13. Hildebrandt, A.F.: Magnetic field of a rotating superconductor. Phys. Rev. Lett. 12, 190 (1964). https://doi.org/10.1103/PhysRevLett.12.190. https://link.aps.org/doi/10.1103/PhysRevLett.12.190

  14. Zimmerman, J.E., Mercereau, J.E.: Compton wavelength of superconducting electrons. Phys. Rev. Lett 14, 887 (1965). https://doi.org/10.1103/PhysRevLett.14.887. https://link.aps.org/doi/10.1103/PhysRevLett.14.887

    Article  MathSciNet  ADS  Google Scholar 

  15. Brickman, N.F.: Rotating superconductors. Phys. Rev. 184, 460 (1969). https://doi.org/10.1103/PhysRev.184.460. https://link.aps.org/doi/10.1103/PhysRev.184.460

    Article  ADS  Google Scholar 

  16. Tate, J., Cabrera, B., Felch, S.B., Anderson, J.T.: Precise determination of the cooper-pair mass. Phys. Rev. Lett. 62, 845 (1989). https://doi.org/10.1103/PhysRevLett.62.845. https://link.aps.org/doi/10.1103/PhysRevLett.62.845

    Article  ADS  Google Scholar 

  17. Tate, J., Felch, S.B., Cabrera, B.: Determination of the cooper-pair mass in niobium. Phys. Rev. B 42, 7885 (1990). https://doi.org/10.1103/PhysRevB.42.7885. https://link.aps.org/doi/10.1103/PhysRevB.42.7885

    Article  ADS  Google Scholar 

  18. Verheijen, A., van Ruitenbeek, J., de Bruyn Ouboter, R., de Jongh, L.: The London moment for high temperature superconductors. Physica B: Condensed Matter 165-166, 1181 (1990). https://doi.org/10.1016/S0921-4526(09)80176-2. http://www.sciencedirect.com/science/article/pii/S0921452609801762.LT-19

    Article  ADS  Google Scholar 

  19. Verheijen, A.A., van Ruitenbeek, J.M., de Bruyn Ouboter, R., de Jongh, L.J.: Measurement of the London moment in two high-temperature superconductors. Nature 345(6274), 418 (1990). https://doi.org/10.1038/345418a0

    Article  ADS  Google Scholar 

  20. Sanzari, M.A., Cui, H.L., Karwacki, F.: London moment for heavy-fermion superconductors. Appl. Phys. Lett. 68(26), 3802 (1996). https://doi.org/10.1063/1.116622

    Article  ADS  Google Scholar 

  21. Becker, R., Heller, G., Sauter, F.: Über die Stromverteilung in einer supraleitenden Kugel. Zeitschrift für Physik 85(11), 772 (1933). https://doi.org/10.1007/BF01330324

    Article  MATH  ADS  Google Scholar 

  22. London, F., London, H.: The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. A149, 71 (1935)

    MATH  ADS  Google Scholar 

  23. Nambu, Y.: Quasi-particles and gauge invariance in the theory of superconductivity. Phys. Rev. 117, 648 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  24. Koizumi, H., Hidekata, R., Okazaki, A., Tachiki, M.: Persistent current generation by the spin-vortex formation in cuprate with the single-valuedness constraint on the conduction electron wave functions. J. Supercond. Nov. Magn. 27, 121 (2014)

    Article  Google Scholar 

  25. Koizumi, H.: Possible occurrence of superconductivity by the π-flux Dirac string formation due to spin-twisting itinerant motion of electrons. Symmetry 12, 776 (2020)

    Article  Google Scholar 

  26. Koizumi, H., Ishikawa, A.: Theory of supercurrent in superconductors. International Journal of Modern Physics B. https://doi.org/10.1142/S0217979220300017 (2020)

  27. Schafroth, M.R.: Theoretical Aspects of Superconductivity Solid State Physics, vol. 10. Academic Press, New York (1960)

    Google Scholar 

  28. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. Roy. Soc. London Ser. A 391, 45 (1984)

    MathSciNet  MATH  ADS  Google Scholar 

  29. Born, M., Oppenheimer, J.R.: Zur Quantentheorie der Molekeln. Annalen der Physik 389, 457 (1927)

    Article  MATH  ADS  Google Scholar 

  30. Mead, C.A., Truhlar, D.: On the determination of Born-Oppenheimer nucelar motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70, 2284 (1979)

    Article  ADS  Google Scholar 

  31. Yuan, D., Guan, Y., Chen, W., Zhao, H., Yu, S., Luo, C., Tan, Y., Xie, T., Wang, X., Sun, Z., Zhang, D.H., Yang, X.: Observation of the geometric phase effect in the H + HD → H2 + D reaction. Science 362(6420), 1289 (2018). https://doi.org/10.1126/science.aav1356. https://science.sciencemag.org/content/362/6420/1289

    Article  ADS  Google Scholar 

  32. Kerman, A.K., Koonin, S.E.: Hamiltonian formulation of time-dependent variational principles for the many-body system. Ann. Phys. 100, 332 (1976)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Carruthers, P., Nieto, M.M.: Phase and angle variables in quantum mechanics. Rev. Mod. Phys. 40, 411 (1968). https://doi.org/10.1103/RevModPhys.40.411. https://link.aps.org/doi/10.1103/RevModPhys.40.411

    Article  ADS  Google Scholar 

  34. Bogoliubov, N.N.: A new method in the theory of superconductivity I. Soviet Physics JETP 34, 41 (1958)

    MathSciNet  Google Scholar 

  35. Koizumi, H.: Explanation of superfluidity using the Berry connection for many-body wave functions. J. Supercond. Nov. Magn. 33, 1697 (2020)

    Article  Google Scholar 

  36. de Gennes, P.G.: Superconductivity of Metals and Alloys (W.A. Benjamin, Inc.) (1966)

  37. Ward, J.C.: An identity in quantum electrodynamics. Phys. Rev. 78, 182 (1950). https://doi.org/10.1103/PhysRev.78.182. https://link.aps.org/doi/10.1103/PhysRev.78.182

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Takahashi, Y.: On the generalized Ward identity. Nuovo Cimento 6, 371 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wick, G.C., Wightman, A.S., Wigner, E.P.: Superselection rule for charge. Phys. Rev. D 1, 3267 (1970)

    Article  ADS  Google Scholar 

  40. Peierls, R.: Spontaneously broken symmetries. J. Phys. A 24, 5273 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  41. Peierls, R.: Broken symmetries. Contemporary Phys. 33, 221 (1992)

    Article  ADS  Google Scholar 

  42. Leggett, A.J.: Quantum Liquids: Bose Condensation And Cooper Pairing in Condensed-matter Systems. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  43. Zurek, W.H.: Decoherence and the transition from quantum to classical—revisited. Los Alamos Science 27, 86 (2002)

    Google Scholar 

  44. Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Physical Soc. Japan 12(6), 570 (1957). https://doi.org/10.1143/JPSJ.12.570

    Article  MathSciNet  ADS  Google Scholar 

  45. Bohm, D.: Note on a theorem of Bloch concerning possible causes of superconductivity. Phys. Rev 75, 502 (1949)

    Article  MATH  ADS  Google Scholar 

  46. Bloch, F.: Some remarks on the theory of superconductivity. Phys. Today 19(5), 27 (1966)

    Article  ADS  Google Scholar 

  47. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Physik 79, 361 (1926)

    Article  MATH  ADS  Google Scholar 

  48. Anderson, P.W.: Basic Notions of Condensed Matter Physics. The Benjamin/Cummings publishing Company, Inc., San Francisco (1984)

    Google Scholar 

  49. Weinberg, S.: Superconductivity for particular theorists. Prog. Theor. Phys. Suppl. 86, 43 (1986). https://doi.org/10.1143/PTPS.86.43

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Andras Kovacs for the informing about the London moment problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Koizumi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koizumi, H. London Moment, London’s Superpotential, Nambu-Goldstone Mode, and Berry Connection from Many-Body Wave Functions. J Supercond Nov Magn 34, 1361–1370 (2021). https://doi.org/10.1007/s10948-021-05827-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05827-9

Keywords

Navigation