Skip to main content
Log in

GeoInt: the first macroseismic intensity database for the Republic of Georgia

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Our work is intended to present the new macroseismic intensity database for the Republic of Georgia—hereby named GeoInt—which includes earthquakes from the historical (from 1250 B.C. onwards) to the instrumental era. Such database is composed of 111 selected earthquakes and related 3944 intensity data points (IDPs) for 1509 different localities, reported in the Medvedev-Sponheuer-Karnik scale (MSK). Regarding the earthquakes, the MS is in the 3.3–7 range and the depth is in the 2–36 km range. The entire set of IDPs is characterized by intensities ranging from 2–3 to 9–10 and covers an area spanning from 39.508° N to 45.043° N in a N-S direction and from 37.324° E to 48.500° E in an E-W direction, with some of the IDPs located outside the Georgian border, in the (i) Republic of Armenia, (ii) Russian Federation, (iii) Republic of Turkey, and (iv) Republic of Azerbaijan. We have revised each single IDP and have reevaluated and homogenized intensity values to the MSK scale. In particular, regarding the whole set of 3944 IDPs, 348 belong to the Historical era (pre-1900) and 3596 belong to the instrumental era (post-1900). With particular regard to the 3596 IDPs, 105 are brand new (3%), whereas the intensity values for 804 IDPs have been reevaluated (22%); for 2687 IDPs (75%), intensities have been confirmed from previous interpretations. We introduce this database as a key input for further improvements in seismic hazard modeling and seismic risk calculation for this region, based on macroseismic intensity; we report all the 111 earthquakes with available macroseismic information. The GeoInt database is also accessible online at http://www.enguriproject.unimib.it and will be kept updated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Adamia S., V. Alania, N. Tsereteli, O. Varazanashvili, N. Sadradze, N. Lursmanashvili, and A. Gventsadze. 2017. Postcollisional tectonics and seismicity of Georgia. GSA Special Papers Online First. http://specialpapers.gsapubs.org/online-first/525

  • Agalarova, E.B., Gasanov, A.G., Gotsadze, O.D., 1985. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1982 godu. Izd. Nauka, Moskva, pp. 12-29

  • Agalarova, E.B., Gasanov, A.G., Geodakyan, E.G., Gotsadze, O.D., 1987. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1984 godu. Izd. Nauka, Moskva, pp. 19-35

  • Agalarova, E.B., Gasanov, A.G., Geodakyan, E.G., Gotsadze, O.D., 1988. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1985 godu. Izd. Nauka, Moskva, pp. 60-75

  • Akhalbedashvili, A. M. 1970. Khashmskoe zemletryasenie v iyune 1967 goda. Zemletryaseniya v SSSR, v 1967 godu. Izd. Nauka, Moskva

  • Akhalbedashvili A, Papalashvili V, Tchitchinadze V (2006) Q. Tbilisis seismurobis shesakheb. Tbilisi, p 47 (in Georgian)

  • Albarello D, D’Amico V (2004) Attenuation relationship of macroseismic intensity in Italy for probabilistic seismic hazard assessment. Boll Geofis Teor Appl 45(4):271–284

    Google Scholar 

  • Albini P, Rovida A (2016) From written records to seismic parameters: the case of the 6 April 1667 Dalmatia earthquake. Geoscience Lett 3(1):30. https://doi.org/10.1186/s40562-016-0063-2

    Article  Google Scholar 

  • Albini, P., Musson, R. M. W., Gomez Capera, A. A., Locati, M., Rovida, A., Stucchi, M., & Viganò, D., 2013. Global historical earthquake archive and catalogue (1000-1903). Pavia, Italy

  • Albini P, Musson RM, Rovida A, Locati M, Gomez Capera AA, Viganò D (2014) The global earthquake history. Earthquake Spectra 30(2):607–624. https://doi.org/10.1193/122013EQS297

    Article  Google Scholar 

  • Ambraseys NN, Adams RD (1989) Long-term seismicity of North Armenia. Eos, Trans Am Geophys Union 70(10):145–154. https://doi.org/10.1029/89EO00080

    Article  Google Scholar 

  • Ameri G, Bindi D, Pacor F, Galadini F (2011) The 2009 April 6, Mw 6.3, L’Aquila (central Italy) earthquake: finite-fault effects on intensity data. Geophys J Int 186(2):837–851. https://doi.org/10.1111/j.1365-246X.2011.05069.x

    Article  Google Scholar 

  • Asadi Z, Zare M (2014) Estimating magnitudes of prehistoric earthquakes and seismic capability of fault from landslide data in Noor valley (central Alborz, Iran). Nat Hazards 74(2):445–461. https://doi.org/10.1007/s11069-014-1186-4

    Article  Google Scholar 

  • Askew BL, Algermissen ST (1985a) Catalog of earthquakes for South America: hypocenter and intensity data, vol 5. CERESIS, Lima

    Google Scholar 

  • Askew BL, Algermissen ST (1985b) Catalog of earthquakes for South America: hypocenter and intensity data, vol 7a. CERESIS, Lima

    Google Scholar 

  • Ayvazishvili IV, Lebedeva TM, Makhatadze LN, Papalashvili VG, Pletnev KG, Siboshvili TI, Rustanovich DN, Shebalin NV, Fabritsius ZE (1973) Zemletryasenie 3 yanvarya 1970 goda v Borjomskom payone. Izd. Metsniereba, Tbilisi, p 55 (in Russian)

    Google Scholar 

  • Babayev, G (2006). Seismic hazard assessment for the Baku City and Absheron Peninsula, Azerbaijan. In AIP Conference Proceedings, 825, 1, 113–119

  • Babayev G, Telesca L (2014) Strong motion scenario of 25th November 2000 earthquake for Absheron peninsula (Azerbaijan). Nat Hazards 73(3):1647–1661. https://doi.org/10.1007/s11069-014-1159-7

    Article  Google Scholar 

  • Babayev G, Tibaldi A, Bonali FL, Kadirov F (2014) Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan. Nat Hazards 72(2):789–808. https://doi.org/10.1007/s11069-014-1035-5

    Article  Google Scholar 

  • Bakun, W. H. (2005). Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake. J Geophys Res: Solid Earth, 110(B2), DOI: https://doi.org/10.1029/2004JB003329

  • Bakun WH (2006a) Estimating locations and magnitudes of earthquakes in southern California from modified Mercalli intensities. Bull Seismol Soc Am 96(4A):1278–1295. https://doi.org/10.1785/0120050205

    Article  Google Scholar 

  • Bakun WH (2006b) MMI attenuation and historical earthquakes in the basin and range province of western North America. Bull Seismol Soc Am 96(6):2206–2220. https://doi.org/10.1785/0120060045

    Article  Google Scholar 

  • Bakun WH, Hopper MG (2004a) Magnitudes and locations of the 1811–1812 New Madrid, Missouri, and the 1886 Charleston, South Carolina, earthquakes. Bull Seismol Soc Am 94(1):64–75. https://doi.org/10.1785/0120020122

    Article  Google Scholar 

  • Bakun WH, Hopper MG (2004b) Historical seismic activity in the central United States. Seismol Res Lett 75(5):564–574. https://doi.org/10.1785/gssrl.75.5.564

    Article  Google Scholar 

  • Bakun WH, Scotti O (2006) Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophys J Int 164(3):596–610. https://doi.org/10.1111/j.1365-246X.2005.02808.x

    Article  Google Scholar 

  • Bakun WH, Wentworth CM (1997) Estimating earthquake location and magnitude from seismic intensity data. Bull Seismol Soc Am 87:1502–1521

    Google Scholar 

  • Bakun WH, Haugerud RA, Hopper MG, Ludwin RS (2002) The December 1872 Washington State Earthquake. Bull Seismol Soc Am 92(8):3239–3258. https://doi.org/10.1785/0120010274

    Article  Google Scholar 

  • Bakun WH, Johnston AC, Hopper MG (2003) Estimating locations and magnitudes of earthquakes in eastern North America from modified Mercalli intensities. Bull Seismol Soc Am 93(1):190–202. https://doi.org/10.1785/0120020087

    Article  Google Scholar 

  • Balassanian S, Nazaretian S, Avanessian A, Arakelian A, Igumnov V, Badalian M, Tovmassian A (1997) The new seismic zonation map for the territory of Armenia. Nat Hazards 15(2–3):231–249. https://doi.org/10.1023/A:1007966706037

    Article  Google Scholar 

  • Balavadze, B.K., Chichinadze, V.K., 1991. Paravanskoe zemletryasenie 13 maya 1986 goda. Otv. red.: Izd. Nauka, Moskva, p. 128 (in Russia)

  • Bindi D, Parolai S, Oth A, Abdrakhmatov K, Muraliev A, Zschau J (2011) Intensity prediction equations for Central Asia. Geophys J Int 187(1):327–337. https://doi.org/10.1111/j.1365-246X.2011.05142.x

    Article  Google Scholar 

  • Bindi D, Parolai S, Gómez-Capera A, Locati M, Kalmetyeva Z, Mikhailova N (2014) Locations and magnitudes of earthquakes in Central Asia from seismic intensity data. J Seismol 18(1):1–21. https://doi.org/10.1007/s10950-013-9392-1

    Article  Google Scholar 

  • Blake A (1941) On the estimation of focal depth from macroseismic data. Bull Seismol Soc Am 31:225–231

    Google Scholar 

  • Brink, U.S., Bakun, W.H., Flores, C.H., 2011. Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region. J Geophys Res: Solid Earth, 116(B12), DOI: https://doi.org/10.1029/2011JB008497

  • Byus, Ye. I.1948. Seysmicheskye usloviya Zakavkaz'ya, chasts I. Izd. AN GSSR, Tbilisi, p. 304

  • Byus YI (1952) Seysmicheskye usloviya Zakavkaz'ya, chasts II. Izd. AN GSSR, Tbilisi, 175 p

    Google Scholar 

  • Capera AAG, D’Amico V, Meletti C, Rovida A, Albarello D (2010) Seismic hazard assessment in terms of macroseismic intensity in Italy: a critical analysis from the comparison of different computational procedures. Bull Seismol Soc Am 100(4):1614–1631. https://doi.org/10.1785/0120090212

    Article  Google Scholar 

  • Cornell, SE, & Ismailzade, F (2005). The Baku-Tbilisi-Ceyhan pipeline: implications for Azerbaijan. The Baku-Tbilisi-Ceyhan Pipeline: Oil Window to the West, 61–84

  • Cua, G, Wald, DJ, Allen, TI, Garcia, D, Worden, CB, Gerstenberger, M, Lin, K, Marano, K, (2010). Best practices for using macroseismic intensity and ground motion intensity conversion equations for hazard and loss models in GEM1 (p. 4). GEM Technical Report 2010-4, GEM Foundation, Pavia, Italy. www. globalquakemodel. org

  • Dolce M, Kappos A, Masi A, Penelis G, Vona M (2006) Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies. Eng Struct 28(3):357–371. https://doi.org/10.1016/j.engstruct.2005.08.009

    Article  Google Scholar 

  • Doser DI (2009) Estimating magnitude and location of Alaskan earthquakes using intensity data. Bull Seismol Soc Am 99(6):3430–3453. https://doi.org/10.1785/0120090045

    Article  Google Scholar 

  • Farahani JV, Zare M, Cichowicz A (2014) Microseismicity of the Tehran region based on the data recorded in a local monitoring network: 2004-2010. Episodes 37(3):206–217

    Google Scholar 

  • Garcia-Mayordomo J, Faccioli E, Paolucci R (2004) Comparative study of the seismic hazard assessments in European national seismic codes. Bull Earthq Eng 2(1):51–73. https://doi.org/10.1023/B:BEEE.0000039046.42398.9d

    Article  Google Scholar 

  • Gotsadze, OD, Tutberidze, NP (1986). Coordinaty ochagov glavnogo i posleduyshchikh zemletryaseniy. In: Balavadze, B., Chichinadze, V. (Eds.), Paravani earthquake on May 13, 1986., Nauka Publ. House, Moscow, p. 36

  • Gregersen S, Wiejacz P, Dębski W, Domanski B, Assinovskaya B, Guterch B, Mantyniemi P, Nikulin VG, Pacesa A, Puura V, Aronov AG, Aronova TI, Grunthal G, Husebye ES, Sliaupa S (2007) The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Phys Earth Planet Inter 164(1):63–74. https://doi.org/10.1016/j.pepi.2007.06.005

    Article  Google Scholar 

  • Grünthal, G (Editor), (1998). European macroseismic scale 1998, Cahiers du Centre Européen de Géodynamique et de Séismologie, Luxembourg, 15, 1–99

  • Grünthal G, Thieken AH, Schwarz J, Radtke KS, Smolka A, Merz B (2006) Comparative risk assessments for the city of Cologne, Germany-storms, floods, earthquakes. Nat Hazards 38(1–2):21–44. https://doi.org/10.1007/s11069-005-8598-0

    Article  Google Scholar 

  • Gülen, L, Team, W (2010). Earthquake Model of the Middle East (EMME) project: active fault database for the Middle East region. In AGU Fall Meeting Abstracts

  • Gülen, L, Şeşetyan, K, Adamia, S, Sadradze, N, Gvencadze, A, & Karakhanyan, A (2014). Earthquake model of the Middle East (EMME) project: active faults and seismic sources second European conference on earthquake engineering and seismology, 2ECEES, 24–29 August 2014, Istanbul, Turkey

  • Hinzen K-G, Oemisch M (2001) Location and magnitude from seismic intensity data of recent and historic earthquakes in the northern Rhine area, Central Europe. Bull Seismol Soc Am 91(1):40–56. https://doi.org/10.1785/0120000036

    Article  Google Scholar 

  • Hough SE (2013) Missing great earthquakes. J Geophys Res: Solid Earth 118(3):1098–1108

    Article  Google Scholar 

  • Jackson, J. A., Ambraseys, N. N., Giardini, D., & Balassanian, S. (1997). Convergence between Eurasia and Arabia in eastern Turkey and the Caucasus. In: Historical and prehistorical earthquakes in the Caucasus, Kluwer, 28, 79–90

  • Kalafat D, Kekovali K, Günes Y, Yilmazer M, Kara M, Deniz P, Berberoğlu M (2009) A catalogue of source parameters of moderate and strong earthquakes for Turkey and its surrounding area (1938–2008). Boğaziçç Üniversitesi Report, Istanbul, Turkey

    Google Scholar 

  • Kalinin, NI, Kuzin, NP, Leonov, NP (1982). Makroseysmicheskoe obsledovanie zemletryaseniya v rayone Inguri GES 27 dekabrya. Zemletryaseniya v SSSR, v 1979 godu. Izd. Nauka, Moskva, pp. 27-31

  • Khromovskikh VS, Nikonov AA (1984) Following strong earthquakes. Nauka Publ, House, Moscow, p 145 (in Russian)

    Google Scholar 

  • Khromovskikh VS, Solonenko VP, Semenov RM, Zhilkin VN (1979) Paleoseismology of the Great Caucasus. Nauka Publ, House, Moscow, p 18 (in Russian)

    Google Scholar 

  • Kondorskaya and Shebalin (Chief Eds) (1982), New catalogue of strong earthquakes in the USSR from ancient times through 1977. 1982. NOAA, USA, pp. 608

  • Lebedeva TM, Makhatadze LN, Papalashvili VG (1970) Paravanskoe zemletryasenie 29 iyunya 1967 goda. Zemletryaseniya v SSSR, v 1967 godu. Izd. Nauka, Moskva, pp. 34-35

  • Levret A, Backe JC, Cushing M (1994) Atlas of macroseismic maps for French earthquakes with their principal characteristics. Nat Hazards 10(1-2):19–46. https://doi.org/10.1007/BF00643439

    Article  Google Scholar 

  • Locati M, Rovida A, Albini P, Stucchi M (2014) The AHEAD portal: a gateway to European historical earthquake data. Seismol Res Lett 85(3):727–734. https://doi.org/10.1785/0220130113

    Article  Google Scholar 

  • Macroseismic data Unpublished. Archives of the TSU M. Nodia Institute of Geophysics

  • Maggio, G. (2017). Trans Adriatic pipeline: a gas pipeline at the centre of a social struggle and a movement in conflict to stop it H-ermes. J Commun, 2017(9), 91–104

  • Makhatadze, L. N., Mukhadze, T. I., Papalashvili, V. G., Tutberidze, N. P., Shengelya, I. S. 1996. Zemletryasenie 16 dekabrya 1990 goda na Djhavakhetskom nagorye v rayone oz. Sagamo. Zemletryaseniya v Severnoy Evrasii, v 1990 g., Izd. OIFZ RAN, Moskva, pp. 28-32

  • Makhatadze, L. N., Mukhadze, T. I., Papalashvili, V. G. 1997. Zemletryasenie 23 oktyabrya 1992 goda v Gudamakarskom ushchelie. Zemletryaseniya v Severnoy Evrasii, v 1992 g. Izd. OIFZ RAN, Moskva, pp. 29-36. (in Russia)

  • Makrushina NG, Shebalin NV (1982) Estimation of the quality of strong shaking sites in seismic zoning maps in the USSR. Probl Eng Seismol 23:97–113 (in Russian)

    Google Scholar 

  • Malinovskiy, N.V., 1935. Catalog of earthquakes in the AzSSR. Proceeding, Az section, branch of the Acad. Scf. USSR, 10 (in Russian)

  • Medvedev, SV, Sponheuer, W, & Karnik, V. (1965). Seismic intensity scale version MSK 1964. United nation educational, scientific and cultural organization, Paris, 7

  • Mukhadze, TI, Papalashvili, VG 2003. Khashminskoe-IV zemletryasenie 27 noyabrya 1997 goda c Mw=5.3, Io=7 (Gruziya). Zemletryaseniya v Severnoy Evrasii, v 1997 g., Izd. OIFZ RAN, Moskva, pp. 244-250

  • Mushketov IV, Orlov AP (1893) The catalog of earthquakes in the Russian empire. Russ. Geogr. Soc, St. Petersburg (in Russian)

    Google Scholar 

  • Musson RM, Grünthal G, Stucchi M (2010) The comparison of macroseismic intensity scales. J Seismol 14(2):413–428. https://doi.org/10.1007/s10950-009-9172-0

    Article  Google Scholar 

  • Nadirov R, Rzayev O (2017) The Metsamor nuclear power plant in the active tectonic zone of Armenia is a potential Caucasian Fukushima. J Geosci Environ Protect 5(04):46–55. https://doi.org/10.4236/gep.2017.54005

    Article  Google Scholar 

  • Napetvaridze SG (1984) Gavazskoe zemletryasenie 23 fevralya 1981 goda. Izd. Metsniereba, Tbilisi, p 54

    Google Scholar 

  • New catalogue of strong earthquakes in the USSR (1977) Nauka Publ. House, Moscow, p 535 (in Russian)

    Google Scholar 

  • Noji EK, Kelen GD, Armenian HK, Oganessian A, Jones NP, Sivertson KT (1990) The 1988 earthquake in Soviet Armenia: a case study. Ann Emerg Med 19(8):891–897. https://doi.org/10.1016/S0196-0644(05)81563-X

    Article  Google Scholar 

  • Norouzi, N, Mojarab, M, Asadi, Z, Zare, M, 2015. A case study of seismic hazard analysis at Al-Tajiat and Al-Zawraa stadiums in Baghdad/Iraq region. Arab J Sci Eng (Springer Science & Business Media BV), 40(7)

  • ONEMI, 2010. Informe de sismo sensible, Gobierno de Chile, Miniserio del Interior (ONEMI), 12/04/2010 + Informe de sismo, Sistema Sismológico Nacional de la Universidad de Chile, 27 de febrero de 2010

  • Papaioannou CA, Papazachos BC (2000) Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull Seismol Soc Am 90(1):22–33. https://doi.org/10.1785/0119980023

    Article  Google Scholar 

  • Papalashvili VG (1997) Seysmicheskye usloviya Kavkaza. Izd. Metsniereba, Tbilisi, p 223

    Google Scholar 

  • Papalashvili, VG, Agalarova, EB, 1993. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1989 godu. Izd. Nauka, Moskva, pp. 24-31

  • Papalashvili, VG, Butikashvili, NA (1996). Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1990 godu. Izd. OIFZ RAN, Moskva, pp. 24-26

  • Papalashvili, VG, Butikashvili, NA (2003). Paravanskoe-II zemletryasenie 9 fevralya 1997 goda c MLH=4.5, Io=5-6 (Gruziya). Zemletryaseniya v Severnoy Evrasii, v 1997 g., Izd. OIFZ RAN, Moskva, pp. 219-221

  • Papalashvili, VG, Makhatadze, LN, (1984). Makroseysmicheskie dannye s parametrami ochaga i izoseysty silnykh zemletryasenii na territorii Gruzinskoy SSR. Otv red. Sh. G. Napetvaridze. Izd. AN GSSR, Tbilisi, 27–28 (in Russian)

  • Papalashvili VG, Bagramyn AK, Gotsadze OD (1982) Zemletryaseniya v SSSR, v 1978 godu. Izd. Nauka, Moskva, pp 11–19 (in Russian)

    Google Scholar 

  • Papalashvili, VG, Mukhadze, TI, Gogmachadze SA (1991). Zemletryasenie 6 sentyabrya v Kobuletskom rayone Adzharskoy ASSR. Zemletryaseniya v SSSR, v 1988 godu. Izd. Nauka, Moskva. pp. 53–59

  • Papalashvili, VG, Varazanashvili, OSh, Gogmachadze, SA, (1997). Racha-Javskoe zemletryasenie 29 aprelya 1991 goda. Zemletryaseniya v SSSR, v 1991

  • Papalashvili, VG, Akhalbedashvili, AM, Kakhiani, LA, (2000). Gruziya. Zemletryaseniya v Severnoy Evrasii, v 1994 g., Izd. OIFZ RAN, Moskva, pp. 18-20

  • Papalashvili, VG, Makhatadze, LN, Gogmachadze, SA, Labadze, LB Askanskoe (2002). Zemletryasenie 28 maya 1996 goda c Kp=11.7, Io=6-7. Zemletryaseniya v Severnoy Evrasii, v 1996 g. Izd. OIFZ RAN, Moskva, 176-180

  • Pasquarè FA, Tormey D, Vezzoli L, Okrostsvaridze A, Tutberidze B (2011) Mitigating the consequences of extreme events on strategic facilities: evaluation of volcanic and seismic risk affecting the Caspian oil and gas pipelines in the Republic of Georgia. J Environ Manag 92(7):1774–1782. https://doi.org/10.1016/j.jenvman.2011.02.003

    Article  Google Scholar 

  • Pataraya, EI (1957). Gomaretskoe zemletryasenie 11 yunya 1954 goda. Trud. IG AN Gruzinskoy SSR, t. 16, pp. 129-133

  • Polese M, Di Ludovico M, Prota A, Manfredi G (2013) Damage-dependent vulnerability curves for existing buildings. Earthquake Eng Struct Dynam 42(6):853–870. https://doi.org/10.1002/eqe.2249

    Article  Google Scholar 

  • Rautian, TG (1964). Ob opredelenii energii zemletryaseniy na rasstoyaniyakh do 3000 km. Akademiya Nauk SSSR, Trudy Instituta Fiziki Zemli, no 32, p. 88–93. (in Russian)

  • Rautian T, Khalturin VI (1978) The use of coda for determination of the earthquake source spectrum. Bull Seism Soc Am 68:904–922

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(B5):B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  • Shebalin, NV (1968) Methods of application of seismic engineering data for regional seismity. Regional seismity in the USSR, Nauka Publ. House, Moscow, pp. 95-111 (in Russian)

  • Shebalin NV (1975) On the estimation of seismic intensity. In: Seismic scale and methods for measuring seismic intensity. Nauka Publ. House, Moscow, pp 87–109 (in Russian)

  • Shebalin, NV, Tatevosian, RE, (1997). Catalogue of large historical earthquakes of the Caucasus, in: Historical and prehistorical earthquakes in the Caucasus. Edited by D. Giardini and S. Balassanian, NATO ASI Series, 2, 201–232, DOI: https://doi.org/10.1007/978-94-011-5464-2_12

  • Shebalin, NV, Aivazishvili, IV, Varazanashvili O, Papalashvili, VG. (1976). Equations of the macroseismic field for the Greater Caucasus and the Transcaucasus. Seismic Bulletin of the Caucasus for 1974. Metnsniereba Publ. House, Moscow, 95–111 (in Russian)

  • Shoushtari AV, Adnan AB, Zare M (2016) On the selection of ground–motion attenuation relations for seismic hazard assessment of the Peninsular Malaysia region due to distant Sumatran subduction intraslab earthquakes. Soil Dyn Earthq Eng 82:123–137. https://doi.org/10.1016/j.soildyn.2015.11.012

    Article  Google Scholar 

  • Soligo, R., & Jaffe, A. M. (2002). The economics of pipeline routes: the conundrum of oil exports from the Caspian basin. In: Energy in the Caspian Region, , Palgrave Macmillan UK109–132

  • Sørensen MB, Stromeyer D, Grünthal G (2010) A macroseismic intensity prediction equation for intermediate depth earthquakes in the Vrancea region, Romania. Soil Dyn Earthq Eng 30(11):1268–1278. https://doi.org/10.1016/j.soildyn.2010.05.009

    Article  Google Scholar 

  • Stepanyan VA (1942) Short chronology of the most important earthquakes in Armenia and neighboring regions. Armenian Acad. Scf, USSR, Yerevan (in Armenian)

    Google Scholar 

  • Stromeyer D, Grünthal G (2009) Attenuation relationship of macroseismic intensities in Central Europe. Bull Seismol Soc Am 99(2A):554–565. https://doi.org/10.1785/0120080011

    Article  Google Scholar 

  • Szeliga W, Hough S, Martin S, Bilham R (2010) Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull Seismol Soc Am 100(2):570–584. https://doi.org/10.1785/0120080329

    Article  Google Scholar 

  • Tan O, Taymaz T (2006) Active tectonics of the Caucasus: earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. Spec Pap Geol Soc Am 409:531–578

    Google Scholar 

  • Tatashidze Z, Tsereteli E, Kutsnashvili O (2000). Principal hazard factor and mechanisms causing landslides (Georgian as an example). In: Proceedings of the international symposium on landslides, Cardiff, Wales, 25–30 June 2000, Thomas Talford, London, 3, 1449–1452

  • Tavera H, Buforn E, Bernal I, Antayhua Y, Vilacapoma L (2002) The Arequipa (Peru) earthquake of June 23, 2001. J Seismol 6(2):279–283. https://doi.org/10.1023/A:1015698621075

    Article  Google Scholar 

  • Tavera, H, Bernal, I, Salas, H (2007). El Sismo de Pisco del 15 de Agosto, 2007 (7.9 Mw) Departamento de Ica – Perú, Instituto Geofisico del Peru, Dirección de Sismología – CNDG, Lima-Perú

  • Telesca L, Matcharasvili T, Chelidze T, Zhukova N (2012) Relationship between seismicity and water level in the Enguri high dam area (Georgia) using the singular spectrum analysis. Nat Hazards Earth Syst Sci 12(8):2479–2485. https://doi.org/10.5194/nhess-12-2479-2012

    Article  Google Scholar 

  • Telesca, L, Kadirov, F, Yetirmishli, G, Safarov, R, Babayev, G, & Ismaylova, S (2017). Statistical analysis of the 2003–2016 seismicity of Azerbaijan and surrounding areas. J Seismol, 1–19

  • Tibaldi, A, & Tsereteli, N (2017). International effort tackles landslide hazards to keep the peace. EOS, TRANSACTIONS, 98, doi: https://doi.org/10.1029/2017EO065815

  • Tibaldi A, Alania V, Bonali FL, Enukidze O, Tsereteli N, Kvavadze N, Varazanashvili O (2017a) Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia. J Struct Geol 96:35–53. https://doi.org/10.1016/j.jsg.2017.01.005

    Article  Google Scholar 

  • Tibaldi A, Russo E, Bonali FL, Alania V, Chabukiani A, Enukidze O, Tsereteli N (2017b) 3-D anatomy of an active fault-propagation fold: a multidisciplinary case study from Tsaishi, western Caucasus (Georgia). Tectonophysics 77:253–269

    Article  Google Scholar 

  • Tibaldi A, FL Bonali, E Russo, F Pasquarè Mariotto, (2017c). Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia. J Asian Earth Sci, submitted

  • Tsakaya AD, Makhatadze LN, Tabidze DD (1967) Chkhaltinskoe zemletryasenie. Izd. Metsniereba, Tbilisi, p 54

    Google Scholar 

  • Tsereteli N, G Tanircan, E Safak, O Varazanashvili, T Chelidze, A Gvencadze, N Goguadze (2012). Seismic hazard assessment for Southern Caucasus–Eastern Turkey energy corridors: the example of Georgia. Correlation between human factors and the prevention of disasters. Edited by David L. Barry, Wilhelm G. Coldewey, Dieter W.G. Reimer, Dmytro V. Rudakov. IOS Press 94, 96–111

  • Tsereteli N, Tibaldi A, Alania V, Gventsadse A, Enukidze O, Varazanashvili O, Muller BIR (2016a) Active tectonics of central-western Caucasus, Georgia. Tectonophysics 691:328–344. https://doi.org/10.1016/j.tecto.2016.10.025

    Article  Google Scholar 

  • Tsereteli A, Askan A, Hamzehloo H (2016b) Hybrid-empirical ground motion estimations for Georgia. Acta Geophysica 64(5):1225–1256. https://doi.org/10.1515/acgeo-2016-0048

    Article  Google Scholar 

  • Tskhakaia, AD (1949). Gudamakarskoe zemletryasenie 15 avgusta 1947 g. Kvart. Seysm. Byull., 14, N1-4, Tbilisi

  • Tskhakaya, AD (1973). Gegechkorskoe zemletryasenie v yanvare 1957 g. Izv. AN SSSR. Izd. AN SSSR, N8, pp. 990–999

  • Tskhakaya, AD, Dzhibladze, EA (1972). Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1968 godu. Izd. Nauka, Moskva, pp.17-31

  • Tskhakaya, AD, Dzhibladze, EA (1973) Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1969 godu. Izd. Nauka, Moskva, pp. 19-28

  • Tskhakaya AD, Papalashvili VG (1973) Seysmicheskye usloviya Kavkaza. Izd. Metsniereba, Tbilisi, p 115

    Google Scholar 

  • Tyagunov S, Grünthal G, Wahlström R, Stempniewski L, Zschau J (2006) Seismic risk mapping for Germany. Nat Hazards Earth Syst Sci 6(4):573–586. https://doi.org/10.5194/nhess-6-573-2006

    Article  Google Scholar 

  • Unpublished instrumental data Archives of the TSU M. Nodia Institute of Geophysics

  • Varazanashvili, O (2017). Unpublished macroseismic data. Archives of the TSU M. Nodia Institute of Geophysics

  • Varazanashvili O, Papalashvili V (1998) Reconstruction of strong earthquake parameters by historical dara of XI-XIV cc. in Georgia. J Georgian Geophys Soc 3(A):77–84

    Google Scholar 

  • Varazanashvili, OSh, Gotsadze, OD et al. (1989). Paravanskoe (Abul-Samsarskoe) zemletryasenie 13 maya. Zemletryaseniya v SSSR, v 1986 godu. Izd. Nauka, Moskva, pp. 78-86

  • Varazanashvili, O., Tsereteli, N., Tsereteli, E. (2011) Historical earthquakes in Georgia (up to 1900): source analysis and catalogue compilation. Monograph, Pub. Hause MVP, Tbilisi, 39–40

  • Varazanashvili O, Tsereteli N, Amiranashvili A, Tsereteli E, Elizbarashvili E, Dolidze J, Qaldani L, Saluqvadze M, Adamia S, Arevadze N, Gvencadze A (2012) Vulnerability, hazards and multiple risk assessment for Georgia. Nat Hazards 64(3):2021–2056. https://doi.org/10.1007/s11069-012-0374-3

    Article  Google Scholar 

  • Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthquake Spectra 15(3):557–564. https://doi.org/10.1193/1.1586058

    Article  Google Scholar 

  • Wu YM, Teng TL, Shin TC, Hsiao NC (2003) Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bull Seismol Soc Am 93(1):386–396. https://doi.org/10.1785/0120020097

    Article  Google Scholar 

  • Zare M (2017) Recent development of the earthquake strong motion-intensity catalog and intensity prediction equations for Iran. J Seismol 21(4):591–613. https://doi.org/10.1007/s10950-016-9622-4

    Article  Google Scholar 

  • Zare, M., Amini, H., Yazdi, P., 2014a. Seismicity of the Middle East: a revision on the seismicity parameters NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering

  • Zare M, Amini H, Yazdi P, Sesetyan K, Betul Demircioglu M, Kalafat D, Erdik M, Giardini D, Asif Khan M, Tsereteli N (2014b) Recent developments of the Middle East catalog. J Seismol 18(N4):749–772. https://doi.org/10.1007/s10950-014-9444-1

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shota Rustaveli National Science Foundation (SRNF) (Project 216758), NATO project EAP SFPP 984934, NATO project SfP G4934 “Georgia Hydropower Security,” and European Space Agency project 32309 “Active tectonics and seismic hazard of southwest Caucasus by remotely-sensed and seismological data.” Two anonymous reviewers are fully acknowledged for their useful comments. We also wish to acknowledge Andrea Rovida for useful suggestions on a preliminary version of the online database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Bonali.

Electronic supplementary material

Online Resource WINZIP archive containing tables of IDPs for each earthquake belonging to GeoInt. Name files listed by earthquake ID from Table 1.

ESM 1

(RAR 1167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varazanashvili, O., Tsereteli, N., Bonali, F.L. et al. GeoInt: the first macroseismic intensity database for the Republic of Georgia. J Seismol 22, 625–667 (2018). https://doi.org/10.1007/s10950-017-9726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-017-9726-5

Keywords

Navigation