Skip to main content
Log in

Volumetric Study of Binary Solvent Mixtures Constituted by Amphiphilic Ionic Liquids at Room Temperature (1-Alkyl-3-Methylimidazolium Bromide) and Water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

At room temperature, the 1-decyl-3-methylimidazolium bromide (DMImBr) is a long alkyl chain imidazolium ionic liquid miscible with water and forming a gel zone between 5 and 40% w/w H2O. We measured the density of the liquid mixtures of water and DMImBr. We determined the apparent molar volume of the molten salt for dilute solutions. For the concentrated solutions the partial molar volume of each component was evaluated by a perturbation method. These results are shown to be substantially different from those obtained with a short chain bromide ionic liquid, 1-butyl-3-methylimidazolium bromide (BMImBr). The amphiphilic ionic liquid (DMImBr) has been shown to form micelles and its critical micelle concentration (cmc) has been determined. Below the cmc, the Debye–Hückel limiting law for 1:1 electrolytes describes very accurately the behavior of low concentrations of the DMImBr salt in water. Above the cmc, the partial molar volume of the micellized monomer was approximately equal to the molar volume of the pure fused salt. The partial molar volume of water in these mixtures was similar to that of pure water. The concentrated solutions behave like mixtures of interpenetrated phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Welton, (1999). Chem. Rev. 99, 2071

    Article  Google Scholar 

  2. M. J. Earle and K. R. Seddon,(2000) Pure Appl. Chem. 72, 1391.

    Google Scholar 

  3. M. Freemantle, (1998) Chem. Eng. News 30, 32.

    Google Scholar 

  4. A. Heintz, D. Klasen, and J. K. Lehmann,(2002) J. Solution Chem. 31, 467.

    Article  Google Scholar 

  5. W. Marczak, S. P. Verevkin, and A. Heintz,(2003) J. Solution Chem. 32, 519.

    Article  Google Scholar 

  6. A. Heintz, J. K. Lehmann, and C. Wertz, (2003) J. Chem. Eng. Data 48, 472.

    Article  Google Scholar 

  7. A. Heintz, D. V. Kulikov, and S. P. Verevkin, (2002) J. Chem. Eng. Data 47, 894.

    Article  Google Scholar 

  8. K. R. Seddon, A. Starck, and M. J. Torres, (2000) Pure Appl. Chem. 72, 2275.

    Google Scholar 

  9. C. M. Gordon, J. D. Holbrey, A. R. Kennedy, and K. R. Seddon, J. Mater. Chem. 8, 2627 (1998).

    Article  Google Scholar 

  10. J. D. Holbrey and K. R. Seddon, J. Chem. Soc. Dalton Trans. 2133 (1999).

  11. I. Cammarata, S. G. Kazarian, P. A. Salter, and T. Welton, (2001) Phys. Chem. Chem. Phys. 3, 5192.

    Article  Google Scholar 

  12. W. D. Harkins and H. F. Jordan,(1930) J. Am. Chem. Soc. 52, 1751.

    Google Scholar 

  13. O. Redlich, (1940) J. Phys. Chem. 44, 619.

    Google Scholar 

  14. O. Redlich and P. Rosenfeld, (1931) Z. Elektrochem. 37, 705.

    Google Scholar 

  15. O. Redlich and P. Rosenfeld, Z. Elektrochem, (1931) Z. Phys. Chem. Abt. A 155, 65.

    Google Scholar 

  16. P. Letellier and M. Biquard, (1982) Can. J. Chem. 60, 1155.

    Google Scholar 

  17. F. J. Millero, in Structure and Transport Process in Water and Aqueous Solutions, Chap. 15 (R. A. Home, eds. (Wiley, New York, 1971).

    Google Scholar 

  18. B. E. Conway, R. E. Verrall, and J. E. Desnoyers, (1966) Trans. Faraday Soc. 62, 2738.

    Article  Google Scholar 

  19. J. E. Desnoyers, M. Arel, J. Perron, and C. Jolicoeur, (1969) J. Phys. Chem. 73, 3346.

    Google Scholar 

  20. F. Franks and H. T. Smith, (1967) Trans. Faraday Soc. 63, 2586.

    Article  Google Scholar 

  21. M. Hadded, M. Biquard, P. Letellier, and R. Schaal, (1985) Can. J. Chem. 63, 565.

    Google Scholar 

  22. G. Perron, A. Hardy, J. C. Justice, and J. E. Desnoyers, (1993) J. Solution Chem. 22, 1159 .

    Article  Google Scholar 

  23. R. F. Tuddeham and A. E. Alexander, (1962) J. Phys. Chem. 66, 1839.

    Google Scholar 

  24. E. M. Lee, R. K. Thomas, J. Penfold, and R. C. Ward, (1989) J. Phys. Chem. 93, 381.

    Google Scholar 

  25. J. E. Desnoyers and M. Arel, (1967) Can. J. Chem. 45, 359.

    Google Scholar 

  26. K. Shinoda and T. Soda, (1963) J. Phys. Chem. 67, 2072.

    Google Scholar 

  27. T. S. Brun, H. Holland, and E. Vikingstad, (1978) J. Colloid Interface Sci. 63, 89.

    Article  Google Scholar 

  28. H. Holland and E. Vikingstad, (1978) J. Colloid Interface Sci. 64, 126.

    Article  Google Scholar 

  29. P. Picker, E. Tremblay, and C. Jolicoeur, (1974) J. Solution Chem. 3, 377.

    Article  Google Scholar 

  30. J. M. Musbally, J. Perron, and J. E. Desnoyers, (1974) J. Colloid Interface Sci. 48, 494.

    Article  Google Scholar 

  31. M. A. Firestone, J. A. Dzielawa, P. Zapol, L. A. Curtiss, S. Seifert, and M. L. Dietz, (2002) Langmuir 18, 7258.

    Article  Google Scholar 

  32. M. J. Corkill, J. F. Goodman, and T. Walker, (1967)Trans. Faraday Soc. 63, 768.

    Article  Google Scholar 

  33. D. Lemordant and R. Gaboriaud, (1985) Fluid Phase Equilibria 20, 269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gaillon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaillon, L., Sirieix-Plenet, J. & Letellier, P. Volumetric Study of Binary Solvent Mixtures Constituted by Amphiphilic Ionic Liquids at Room Temperature (1-Alkyl-3-Methylimidazolium Bromide) and Water. J Solution Chem 33, 1333–1347 (2004). https://doi.org/10.1007/s10953-004-1045-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-004-1045-0

Navigation