Skip to main content
Log in

Competition Between O2 and H2O2 in the Oxidation of Fe(II) in Natural Waters

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

The oxidation rates of nanomolar levels of Fe(II) in seawater (salinity S = 36.2) by mixtures of O2 and H2O2 has been measured as a function of pH (5.8–8.4) and temperature (3–35∘C). A competition exists for the oxidation of Fe(II) in the presence of both O2 (μ mol⋅L−1 levels) and H2O2 (nmol⋅L−1 levels). A kinetic model has been applied to explain the experimental results that considers the interactions of Fe(II) with the major ions in seawater. In the presence of both oxidants, the hydrolyzed Fe(II) species dominate the Fe(II) oxidation process between pH 6 and 8.5. Over pH range 6.2–7.9, the FeOH+ species are the most active, whereas above pH 7.9, the Fe(OH)02 species are the most active at the levels of CO2−3 concentration present in seawater. The predicted Fe(II) oxidation rate at [Fe(II)]0 = 30nmol⋅L−1 and pH = 8.17 in the oxygen-saturated seawater with [H2O2]0 = 50nmol⋅L−1 (log 10 k = −2.24s−1) is in excellent agreement with the experimental value of log 10 k = −2.29s−1 ([H2O2]0 = 55nmol⋅L−1, pH = 8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Pestane and R. G. Zika, Fate of Superoxide in Coastal Seawater, Nature 325, 516–518 (1987).

    Google Scholar 

  2. R. G. Zika, J. W. Moffett, R. G. Pestane, W. J. Cooper, and E. S. Saltzman, Spatial and Temporal Variations of Hydrogen Peroxide in Gulf of Mexico Waters, Geochim. Cosmochim. Acta 49, 1173–1184 (1985).

    Article  CAS  Google Scholar 

  3. C. A. Moore, C. T. Farmer, and R. G. Zika, Influence of the Orinoco River on Hydrogen Peroxide Distribution and Production in the Eastern Caribbean, J. Geophys. Res. 98, 2289–2298 (1993).

    CAS  Google Scholar 

  4. J. W. Moffett and R. G. Zika, Reaction Kinetics of Hydrogen Peroxide with Copper and Iron in Seawater, Environ. Sci. Technol. 21, 804–810 (1987).

    Article  CAS  Google Scholar 

  5. D. W. King, H. A. Lounsbury, and F. J. Millero, Rates and Mechanism of Fe(II) Oxidation at Nanomolar Total Iron Concentrations, Environ. Sci. Technol. 29, 818–824 (1995).

    Article  CAS  Google Scholar 

  6. J. M. Santana-Casiano, M. González-Dávila, and F. J. Millero, Oxidation of Nanomolar Levels of Iron(II) with Oxygen in Seawater, Environ. Sci. Technol. 39, 2073–2079 (2005).

    Article  CAS  Google Scholar 

  7. A. L. Rose and T. D. Waite, Kinetic Model for Fe(II) Oxidation in Seawater in the Absence and Presence of Natural Organic Matter, Environ. Sci. Technol. 36, 433–444 (2002).

    Article  CAS  Google Scholar 

  8. K. W. Bruland and E. L. Rue, Analytical Methods for the Determination of Concentrations and Speciation of Iron, in The Biogeochemistry of Iron in Seawater, D. R. Turner and K. A. Hunter, Eds. (Wiley, England, 2001), pp. 255–289.

  9. K. H. Coale, K. S. Johnson, S. E. Fitzwater, S. P. G. Blain, T. P. Stanton, and T. L. Coley, IronEx-1, an In Situ Iron-enrichment Experiment: Experimental Design, Implementation and Results, Deep Sea Res. II 45, 919–945 (1998).

    Article  CAS  Google Scholar 

  10. P. L. Croot, P. Laan, J. Nishioka, V Strass, B. Cisewski, M. Boye, K. R. Timmermans, R. G. Bellerby, L. Goldson, P. Nightigale, and H. J. W de Baar, Spatial and Temporal Distribution of Fe(II) and H2O2 During EisenEX, an Open Ocean Mesoscale Iron Enrichment, Mar. Chem. 95, 65–88 (2005).

    Article  CAS  Google Scholar 

  11. M. González-Dávila, J. M. Santana-Casiano, and F. J. Millero, Oxidation of Nanomolar Levels of Iron(II) with H2O2 in Seawater, Geochim. Cosmochim. Acta 69, 83–93 (2005).

    Google Scholar 

  12. F. J. Millero, The pH of Estuarine Waters, Limnol. Oceanogr. 31, 839–847 (1986).

    CAS  Google Scholar 

  13. E. Viollier, P. W. Inglet, K. Hunter, A. N. Roychuodhury, and P. Capellen, The Ferrozine Method Revisited: Fe(II)(Fe(III) Determination in Natural Waters, App. Geochem. 15, 785–790 (2000).

    CAS  Google Scholar 

  14. J. Z. Zhang, C. Kelble, and F. J. Millero, Gas-segmented Continuous Flow Analysis of Iron in Water with a Long Liquid Waveguide Capillary Flow Cell, Anal. Chim. Acta. 438, 49–57 (2001).

    Article  CAS  Google Scholar 

  15. R. G. Zika and E. S. Saltzman, Interaction of Ozone and Hydrogen Peroxide in Water: Implication for Analysis of H2O2 in Air, Geophys. Res. Lett. 9, 231–234 (1982).

    CAS  Google Scholar 

  16. H. P. Hansen, Determination of Oxygen, in Methods of Seawater Analysis, K. Grasshoff, K. Kremling, and M. Ehrhardt, Eds. (Wiley-VCH, Germany, 1999), pp. 75–89, Chapter 4.

  17. F. J. Millero, S. Sotolongo, and M. Izaguirre, The Kinetics of Oxidation of Fe(II) in Seawater, Geochim. Cosmochim. Acta 51, 793–801 (1987).

    CAS  Google Scholar 

  18. W. Stumm and G. F. Lee, Kinetic Product of Ferrous Iron, Ind. Eng. Chem. 53, 143–146 (1961).

    CAS  Google Scholar 

  19. F. J. Millero and S. Sotolongo, The Oxidation of Fe(II) with H2O2 in Seawater, Mar. Chem. 53, 1867–1873 (1989).

    CAS  Google Scholar 

  20. D. W. King and R. Farlow, Role of Carbonate Speciation on the Oxidation of Fe(II) by H2O2, Mar. Chem. 70, 201–209 (2000).

    Article  CAS  Google Scholar 

  21. J. M. Santana-Casiano, M. González-Dávila, and F. J. Millero, The Oxidation of Fe(II) in NaCl–HCO3 and Seawater Solutions in the Presence of Phthalate and Salicylate Ions: A Kinetic Model, Mar. Chem. 85, 27–40 (2004).

    Article  CAS  Google Scholar 

  22. D. W. King, Role of Carbonate Speciation on the Oxidation Rate of Fe(II) in Aquatic Systems, Environ. Sci. Technol. 32, 2997–3003 (1998).

    CAS  Google Scholar 

  23. J. D. Rush and B. H. J. Bielsky, Pulse Radiolytic Studies of the Reactions of HO2/O2 with Fe(II)/Fe(III) Ions. The Reactivity of HO2/O2 with Ferric Ions and its Implication on the Occurrence of the Haber–Weiss Reaction, J. Phys. Chem. 89, 5062–5066 (1985).

    CAS  Google Scholar 

  24. B. M. Voelker, D. L. Sedlak, and O. Zafiriou, Chemistry of Superoxide Radical in Seawater: Reaction with Organic Cu Complexes, Environ. Sci. Technol. 34, 1036–1042 (2000).

    Article  CAS  Google Scholar 

  25. T. L. Theis and P. C. Singer, Complexation of Fe(II) with Organic Matter and its Effect on Fe(II) Oxygenation, Environ. Sci. Technol. 8, 569–573 (1974).

    Article  CAS  Google Scholar 

  26. J. M. Santana-Casiano, M. González-Dávila, M. J. Rodríguez, and F. J. Millero, The Effects of Organic Compounds in the Oxidation Kinetics of Fe(II), Mar. Chem. 70, 211–222 (2000).

    Article  CAS  Google Scholar 

  27. B. M. Voelker and B. Sulzberger, Effects of Fulvic Acid on Fe(II) Oxidation by Hydrogen Peroxide, Environ. Sci. Technol. 30, 1106–1114 (1996).

    Article  CAS  Google Scholar 

  28. A. L. Rose and T. D. Waite, Effect of Dissolved Natural Organic Matter on the Kinetics of Ferrous Iron Oxygenation in Seawater, Environ. Sci. Technol. 37, 4877–4886 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Millero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Dávila, M., Santana-Casiano, J.M. & Millero, F.J. Competition Between O2 and H2O2 in the Oxidation of Fe(II) in Natural Waters. J Solution Chem 35, 95–111 (2006). https://doi.org/10.1007/s10953-006-8942-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-8942-3

KEY WORDS

Navigation