Skip to main content
Log in

Aggregation Behavior of Pyridinium-Based Ionic Liquids in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aggregation of the ionic liquids 1-butylpyridinium tetrafluoroborate, 1-butylpyridinium triflate, 1-butyl-2-methylpyridinium tetrafluoroborate, 1-butyl-3-methylpyridinium tetrafluoroborate, 1-butyl-4-methylpyridinium tetrafluoroborate, 1-butyl-3-methylpyridinium dicyanamide, and 1-octyl-3-methylpyridinium tetrafluoroborate in aqueous solution has been characterized at 298.15 K through density, ρ, speed of sound, u, and conductivity, σ, measurements. In addition, apparent molar volumes, V φ , and isentropic compressibilities, κ s , have been calculated from the experimental data. To characterize the formation of aggregates, the critical aggregation concentration of the ionic liquids, cac, the degree of ionization of the aggregates, β, and the standard Gibbs energy of aggregation, \(\Delta G_{\mathrm{m}}^{\circ}\), have been obtained, with good agreement between results derived from the different methods. The dependence on the structural variation of these ions has been analyzed by comparing the results obtained for this series of ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 107, 6170–6178 (2003)

    Article  CAS  Google Scholar 

  2. Brennecke, J.F., Maginn, E.J.: Ionic liquids: innovative fluids for chemical processing. AlChE J. 47, 2384–2389 (2001)

    CAS  Google Scholar 

  3. Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  4. Triolo, A., Russina, O., Bleif, H.J., Di Cola, E.: Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B 111, 4641–4644 (2007)

    Article  CAS  Google Scholar 

  5. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S., Brennecke, J.F.: Thermophysical properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 49, 954–964 (2004)

    Article  CAS  Google Scholar 

  6. Yoshida, Y., Baba, O., Larriba, C., Saito, G.: Imidazolium-based ionic liquids formed with dicyanamide anion: influence of cationic structure on ionic conductivity. J. Phys. Chem. B 111, 12204–12210 (2007)

    Article  CAS  Google Scholar 

  7. Singh, T., Kumar, A.: Self-aggregation of ionic liquids in aqueous media: a thermodynamic study. Colloids Surf. A 318, 263–268 (2008)

    Article  CAS  Google Scholar 

  8. Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: Effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)

    Article  CAS  Google Scholar 

  9. Wang, J.J., Wang, H.Y., Zhang, S.L., Zhang, H.H., Zhao, Y.: Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C(4)mim][BF4] and [C(n)mim]Br(n=4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 111, 6181–6188 (2007)

    Article  CAS  Google Scholar 

  10. Mukerjee, P., Mysels, K.J., Kapauan, P.: Counterion specificity in formation of ionic micelles—size hydration and hydrophobic bonding effects. J. Phys. Chem. 71, 4166–4175 (1967)

    Article  CAS  Google Scholar 

  11. Bandres, I., Giner, B., Artigas, H., Royo, F.M., Lafuente, C.: Thermophysic comparative study of two isomeric pyridinium-based ionic liquids. J. Phys. Chem. B 112, 3077–3084 (2008)

    Article  CAS  Google Scholar 

  12. Bandres, I., Giner, B., Artigas, H., Lafuente, C., Royo, F.M.: Thermophysical properties of n-octyl-3-methylpyridinium tetrafluoroborate. J. Chem. Eng. Data 54, 236–240 (2009)

    CAS  Google Scholar 

  13. Bandres, I., Giner, B., Gascon, I., Castro, M., Lafuente, C.: Physicochemical characterization of n-butyl-3-methylpyridinium dicyanamide ionic liquid. J. Phys. Chem. B 112, 12461–12467 (2008)

    Article  CAS  Google Scholar 

  14. Desnoyers, J.E., Perron, G.: Thermodynamic properties of surfactant solution. In: K.S. Birdi (ed.) Handbook of Surface and Colloid Chemistry, CRC Press, Boka Raton, pp. 119–156 (1997)

  15. Shinoda, K., Hutchinson, E.: Pseudo-phase separation model for thermodynamic calculations on micellar solutions. J. Phys. Chem. 66, 577–582 (1962)

    Article  CAS  Google Scholar 

  16. Mokhtarani, B., Sharifi, A., Mortaheb, H.R., Mirzaei, M., Mafi, M., Sadeghian, F.: Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Therm. 41, 323–329 (2009)

    Article  CAS  Google Scholar 

  17. Ortega, J., Vreekamp, R., Marrero, E., Penco, E.: Thermodynamic properties of 1-butyl-3-methylpyridinium tetrafluoroborate and its mixtures with water and alkanol. J. Chem. Eng. Data 52, 2269–2276 (2007)

    Article  CAS  Google Scholar 

  18. Ortega, J., Vreekamp, R., Penco, E., Marrero, E.: Mixing thermodynamic properties of 1-butyl-4-methylpyridinium tetrafluoroborate [b4mpy][BF4] with water and with an alkan-1ol (methanol to pentanol). J. Chem. Therm. 40, 1087–1094 (2008)

    Article  CAS  Google Scholar 

  19. Navas, A., Ortega, J., Vreekamp, R., Marrero, E., Palomar, J.: Experimental thermodynamic properties of 1-butyl-2-methylpyridinium tetrafluoroborate [b2mpy][BF4] with water and with alkan-1-ol and their interpretation with the COSMO-RS methodology. Ind. Eng. Chem. Res. 48, 2678–2690 (2009)

    Article  CAS  Google Scholar 

  20. Yoshida, Y., Baba, O., Saito, G.: Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity. J. Phys. Chem. B 111, 4742–4749 (2007)

    Article  CAS  Google Scholar 

  21. Mehta, S.K., Bhasin, K.K., Chauhan, R., Dham, S.: Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf. A 255, 153–157 (2005)

    Article  CAS  Google Scholar 

  22. Gonzalez-Perez, A., del Castillo, J.L., Czapkiewicz, J., Rodriguez, J.R.: Conductivity, density, and adiabatic compressibility of dodecyldimethylbenzylammonium chloride in aqueous solutions. J. Phys. Chem. B 105, 1720–1724 (2001)

    Article  CAS  Google Scholar 

  23. Skerjanc, J., Kogej, K., Cerar, J.: Equilibrium and transport properties of alkylpyridinium bromides. Langmuir 15, 5023–5028 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lafuente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandrés, I., Meler, S., Giner, B. et al. Aggregation Behavior of Pyridinium-Based Ionic Liquids in Aqueous Solution. J Solution Chem 38, 1622–1634 (2009). https://doi.org/10.1007/s10953-009-9474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-009-9474-4

Navigation