Skip to main content
Log in

Solvation of Metal Cations in Non-aqueous Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The role that alkali cations in non-aqueous solvents play in organic reactions continues to be a topic of interest. In particular it has been observed that these cations can alter the stereoselectivity of organic reactions. Our interest is to first understand the nature of cation–ether complexes, then to investigate the role that the cation plays in the reaction. We have used the electronic structure techniques Hartree-Fock (HF), Second-order Møller-Plesset perturbation theory (MP2), and the Becke three-parameter exchange functional coupled with the nonlocal correlation functional of Lee, Yang, and Parr (B3LYP) to study the structure and properties of tetrahydrofuran (THF) and dimethyl ether (DME) solvation complexes with Li+, Na+, K+, Cu+, and MgCl+. The values calculated for DME complexes were compared with existing experimentally determined data. The B3LYP/6-31+G model chemistry was found to be the most accurate and efficient method of modeling the cation–DME molecular system. The energetic trends observed in the DME results were also observed in the THF data. Based on the accuracy of the calculations and the computational cost of the calculations, B3LYP was found to be the most desirable method of modeling these types of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudo, H., Hashimoto, M., Yokoyama, K., Wu, C.H., Dorigo, A.E., Bickelhaupt, F.M., von Schleyer, P.: Structure and stability of the Li2CN molecule. An experimental and ab initio study. J. Phys. Chem. 99, 6477–6482 (1995)

    Article  CAS  Google Scholar 

  2. Hill, S.E., Glendening, E.D., Feller, D.: Theoretical study of cation/ether complexes: the alkali metals and dimethyl ether. J. Phys. Chem. A 101, 6125–6131 (1997)

    CAS  Google Scholar 

  3. Alia, J.M., Edwards, H.G.M.: FT-Raman study of ionic interactions in lithium and silver tetrafluoroborate solutions in acrylonitrile. J. Solution Chem. 29, 781–797 (2000)

    Article  CAS  Google Scholar 

  4. Aroca, R., Nazri, M., Nazri, G.A., Camargo, A.J., Trsic, M.: Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries. J. Solution Chem. 29, 1047–1060 (2000)

    Article  CAS  Google Scholar 

  5. Atkins, P., Hefter, G.T., Singh, P.: Ion solvation in lithium battery electrolyte solutions. 1. Apparent molar volumes. J. Solution Chem. 20, 1059–1078 (1991)

    Article  CAS  Google Scholar 

  6. Barthel, J., Buchner, R., Wismeth, E.: FTIR spectroscopy of ion solvation of LiClO4 and LiSCN in acetonitrile, benzonitrile, and propylene carbonate. J. Solution Chem. 29, 937–954 (2000)

    Article  CAS  Google Scholar 

  7. Barthel, J., Deser, R.: FTIR study of ion solvation and ion-pair formation in alkaline and alkaline earth metal salt solutions in acetonitrile. J. Solution Chem. 23, 1133–1146 (1994)

    Article  CAS  Google Scholar 

  8. Das, D.: Ion association and solvation behavior of some lithium salts in tetrahydrofuran. A conductivity and Raman spectroscopic study. J. Solution Chem. 37, 947–955 (2008)

    Article  CAS  Google Scholar 

  9. Das, D., Das, B., Hazra, D.K.: Electrical conductance of some symmetrical tetraalkylammonium and alkali salts in N,N-dimethylacetamide at 25 °C. J. Solution Chem. 32, 77–83 (2003)

    Article  CAS  Google Scholar 

  10. De, R., Guha, C., Das, B.: Ion association and solvation behavior of some 1–1 electrolytes in 2-ethoxyethanol probed by a conductometric study. J. Solution Chem. 35, 1505–1514 (2006)

    Article  CAS  Google Scholar 

  11. Hopkins, H., Jahagirdar, D., Norman, A.: Conductance studies on lithium salt–acetonitrile solutions at 25 °C. J. Solution Chem. 8, 147–155 (1979)

    Article  CAS  Google Scholar 

  12. Hourdakis, A., Popov, A.I.: Lithium-7, sodium-23, and cesium-133 NMR and far infrared study of alkali complexes with C222-dilactam in various solvents. J. Solution Chem. 6, 299–307 (1977)

    Article  CAS  Google Scholar 

  13. Kilroy, W.P.: Solubility and solvate formation of lithium hexafluoroarsenate in acetonitrile. J. Solution Chem. 6, 487–490 (1977)

    Article  CAS  Google Scholar 

  14. Kunz, W., Barthel, J., Klein, L., Cartailler, T., Turq, P., Reindl, B.: Lithium bromide in acetonitrile: thermodynamics, theory, and simulation. J. Solution Chem. 20, 875–891 (1991)

    Article  CAS  Google Scholar 

  15. Ohtaki, H., Wada, H.: Structure of solvated lithium and chloride ions in formamide. J. Solution Chem. 14, 209–219 (1985)

    Article  CAS  Google Scholar 

  16. Petrowsky, M., Rhodes, C.P., Frech, R.: Vibrational spectroscopic study of 2-methoxyethyl ether complexed with lithium and sodium trifluoromethanesulfonate. J. Solution Chem. 30, 171–181 (2001)

    Article  CAS  Google Scholar 

  17. Reichstädter, L., Fischerová, E., Fischer, O.: Conductance of lithium and sodium perchlorates and tetraphenylborates in 2-butanone from −35 to 25 °C. J. Solution Chem. 28, 35–60 (1999)

    Article  Google Scholar 

  18. Smetana, A.J., Popov, A.I.: Lithium-7 nuclear magnetic resonance and calorimetric study of lithium crown complexes in various solvents. J. Solution Chem. 9, 183–196 (1980)

    Article  CAS  Google Scholar 

  19. Abbotto, A., Streitwieser, A., Schleyer, P.v.R.: Ab initio and semiempirical study of the effect of ethereal solvent on aggregation of a lithium enolate. J. Am. Chem. Soc. 119, 11255–11268 (1997)

    Article  CAS  Google Scholar 

  20. Carlier, P.R., Lo, C.W.-S.: 7Li/31P NMR studies of lithiated arylacetonitriles in THF–HMPA solution: characterization of HMPA-solvated monomers, dimers, and separated ion pairs. J. Am. Chem. Soc. 122, 12819–12823 (2000)

    Article  CAS  Google Scholar 

  21. Carlier, P.R., Lucht, B.L., Collum, D.B.: 6LiPN NMR-based solution structural determination of EtzO- and TMEDA-solvated lithiophenylacetonitrile and a LiHMDS mixed aggregate. J. Am. Chem. Soc. 116, 11602–11603 (1994)

    Article  CAS  Google Scholar 

  22. Erlich, R.H., Roach, E., Popov, A.I.: Solvation studies of sodium and lithium ions by sodium-23 and lithium-7 nuclear magnetic resonance. J. Am. Chem. Soc. 92, 4889–4890 (1970)

    Article  Google Scholar 

  23. Kaneti, J., Schleyer, P.v.R., Clark, T., Kos, A.J., Spitznagel, G.W., Andrade, J.G., Moffat, J.B.: The structures and energies of the lithium, sodium, and magnesium derivatives of the anions CH2CN and CH2NC. Solvation and aggregation of the lithium species. J. Am. Chem. Soc. 108, 1481–1492 (1986)

    Article  CAS  Google Scholar 

  24. O’Brien, D.H., Russell, C.R., Hart, A.J.: Solvation of alkali metal cations of arylmethyl anions by ethereal solvents. J. Am. Chem. Soc. 101, 633–639 (1979)

    Article  Google Scholar 

  25. Kaufmann, E., Gose, J., Schleyer, P.v.R.: Thermodynamics of solvation of lithium compounds. A combined MNDO and ab initio study. Organometallics 8, 2577–2584 (1989)

    Article  CAS  Google Scholar 

  26. Westphal, E., Pliego, J.R.J.: Absolute solvation free energy of Li+ and Na+ ions in dimethyl sulfoxide solution: a theoretical ab initio and cluster-continuum model study. J. Chem. Phys. 123, 074508–074507 (2005)

    Article  Google Scholar 

  27. Fleming, F.F., Shook, B.C.: Nitrile anion cyclizations. Tetrahedron 58, 1–23 (2002)

    Article  CAS  Google Scholar 

  28. Fleming, F.F., Wei, Y., Liu, W., Zhang, Z.: Metalated nitriles: stereodivergent cation-controlled cyclizations. Tetrahedron 64, 7477–7488 (2008)

    Article  CAS  Google Scholar 

  29. Singh, V., Iyer, S.R., Pal, S.: Recent approaches towards synthesis of cis-decalins. Tetrahedron 61, 9197–9231 (2005)

    Article  CAS  Google Scholar 

  30. Tomasi, J., Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994)

    Article  CAS  Google Scholar 

  31. Carlier, P.R., Madura, J.D.: Effective computational modeling of constitutional isomerism and aggregation states of explicit solvates of lithiated phenylacetonitrile. J. Org. Chem. 67, 3832–3840 (2002)

    Article  CAS  Google Scholar 

  32. Fock, V.A.: Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Z. Phys. 61, 126–148 (1930)

    Google Scholar 

  33. Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proc. Camb. Philos. Soc. 24, 89–110 (1927)

    Article  Google Scholar 

  34. Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part II. Some results and discussion. Proc. Camb. Philos. Soc. 24, 111–132 (1927)

    Article  Google Scholar 

  35. Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part III. Term values and intensities in series in optical spectra. Proc. Camb. Philos. Soc. 24, 426–437 (1928)

    Article  CAS  Google Scholar 

  36. Hartree, D.R.: The distribution of charge and current in an atom consisting of many electrons obeying Dirac’s equations. Proc. Camb. Philos. Soc. 25, 225–236 (1929)

    Article  CAS  Google Scholar 

  37. Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part IV. Further results relating to terms of the optical spectrum. Proc. Camb. Philos. Soc. 25, 310–314 (1929)

    Article  CAS  Google Scholar 

  38. Jarek, R.L., Miles, T.D., Trester, M.L., Denson, S.C., Shin, S.K.: Solvation of Li+ by acetone. THF, and diethyl ether in the gas phase and the ion-molecule association mechanism. J. Phys. Chem. A 104, 2230–2237 (2000)

    Article  CAS  Google Scholar 

  39. Jarek, R.L., Shin, S.K.: Solvation of the Li+–Br–Li+ triple ion in the gas phase. J. Am. Chem. Soc. 119, 10501–10508 (1997)

    Article  CAS  Google Scholar 

  40. Ohanessian, G., McMahon, T.B.: An experimental and ab initio study of the nature of the binding in gas-phase complexes of sodium ions. Chemistry 6, 2931–2941 (2000)

    Article  Google Scholar 

  41. Eriksson, H., Hakansson, M., Jagner, S.: Pentamethylphenylcopper(I): a square-planar tetranuclear cluster. Inorg. Chem. Acta 277, 233–236 (1998)

    Article  CAS  Google Scholar 

  42. Katritzky, A.R., Malhotra, N., Ramananthan, R., Kemerait, R.C.J., Zimmerman, J.A., Eyler, J.R.: Measurement of gas-phase binding energies of crown ethers with metal ions by Fourier-transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 6, 25–27 (1992)

    Article  CAS  Google Scholar 

  43. Koizumi, H., Zhang, X.-G., Armentrout, P.B.: Collision-induced dissociation and theoretical studies of Cu+-dimethyl ether complexes. J. Phys. Chem. A 105, 2444–2452 (2001)

    CAS  Google Scholar 

  44. More, M.B., Glendening, E.D., Ray, D., Feller, D., Armentrout, P.B.: Cation–ether complexes in the gas phase: bond dissociation energies and equilibrium structures of Li+[O(CH3)2] x , x=1–4. J. Phys. Chem. 100, 1605–1614 (1996)

    Article  CAS  Google Scholar 

  45. More, M.B., Ray, D., Armentrout, P.B.: Cation–ether complexes in the gas phase: bond dissociation energies of Na+(dimethyl ether) x , x=1–4; Na+(1,2-dimethoxyethane) x , x=1 and 2; and Na+(12-crown-4). J. Phys. Chem. A 101, 831–839 (1997)

    CAS  Google Scholar 

  46. More, M.B., Ray, D., Armentrout, P.B.: Cation–ether complexes in the gas phase: bond dissociation energies of K+(dimethyl ether) x , x=1–4; K+(1,2-dimethoxyethane) x , x=1 and 2; and K+(12-crown-4). J. Phys. Chem. A 101, 4254–4262 (1997)

    CAS  Google Scholar 

  47. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J.V.B., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskortz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chem, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, CT (2004)

  48. Evanseck, J.D., Kong, S.: Density functional theory study of aqueous-phase rate acceleration and endo/exo selectivity of the butadiene and acrolein Diels-Alder reaction. J. Am. Chem. Soc. 122, 10418–10427 (2000)

    Article  Google Scholar 

  49. Krishnan, R., Frisch, M.J., Pople, J.A.: Contribution of triple substitutions to the electron correlation energy in fourth order perturbation theory. J. Chem. Phys. 72, 4244–4245 (1980)

    Article  CAS  Google Scholar 

  50. Krishnan, R., Pople, J.A.: Approximate fourth-order perturbation theory of the electron correlation energy. J. Quant. Chem. 14, 91–100 (1978)

    Article  CAS  Google Scholar 

  51. Moller, C., Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934)

    Article  CAS  Google Scholar 

  52. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5662 (1993)

    Article  CAS  Google Scholar 

  53. Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  54. Bauschlicher, C.W.J., Langhoff, S.R., Partridge, H.: The binding energies of Cu+–(H2O) n and Cu+–(NH3) n (n=1–4). J. Chem. Phys. 94, 2068–2072 (1991)

    Article  CAS  Google Scholar 

  55. Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)

    Article  CAS  Google Scholar 

  56. Born, M.: Volumen und Hydratationswärme der Ionen. Z. Phys. 1, 45–48 (1920)

    CAS  Google Scholar 

  57. Latimer, W.M., Pitzer, K.S., Slansky, C.M.: The free energy of hydration of gaseous ions, and the absolute potential of the normal calomel electrode. J. Chem. Phys. 7, 108–111 (1939)

    Article  CAS  Google Scholar 

  58. Rashin, A.A., Honig, B.: Reevaluation of the Born model of ion hydration. J. Phys. Chem. 89, 5588–5593 (1985)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffry D. Madura.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10953_2011_9732_MOESM1_ESM.docx

(SI-1) Gaussian archives for all optimization and frequency calculations. (SI-2) Coordinates (xyz) for all optimized geometries (DOCX 2.37 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, M.J., Madura, J.D. Solvation of Metal Cations in Non-aqueous Liquids. J Solution Chem 40, 1383–1398 (2011). https://doi.org/10.1007/s10953-011-9732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-011-9732-0

Keywords

Navigation