Skip to main content
Log in

Front Propagation Dynamics with Exponentially-Distributed Hopping

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study reaction-diffusion systems where diffusion is by jumps whose sizes are distributed exponentially. We first study the Fisher-like problem of propagation of a front into an unstable state, as typified by the A+B → 2A reaction. We find that the effect of fluctuations is especially pronounced at small hopping rates. Fluctuations are treated heuristically via a density cutoff in the reaction rate. We then consider the case of propagating up a reaction rate gradient. The effect of fluctuations here is pronounced, with the front velocity increasing without limit with increasing bulk particle density. The rate of increase is faster than in the case of a reaction-gradient with nearest-neighbor hopping. We derive analytic expressions for the front velocity dependence on bulk particle density. Computer simulations are performed to confirm the analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Kolmogorov, I. Petrovsky, and N. Piscounov. Moscow Univ. Bull. Math. A 1:1 (1937).

    Google Scholar 

  2. D. A. Kessler, J. Koplik, and H. Levine. Adv. Phys. 37:255 (1988).

    Article  ADS  Google Scholar 

  3. J. Mai, I. M. Sokolov, and A. Blumen. Phys. Rev. Lett. 77:4462 (1996).

    Article  PubMed  ADS  Google Scholar 

  4. R. A. Fisher. Annual Eugenics 7:355 (1937).

    Google Scholar 

  5. D. A. Kessler, Z. Ner, and L. M. Sander. Phys. Rev. E 58:107 (1998).

    Article  ADS  Google Scholar 

  6. E. Brunet and B. Derrida. Phys. Rev. E 56:2597 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  7. U. Ebert and W. van Saarloos. Phys. Rev. Lett. 80:1650 (1998).

    Article  ADS  Google Scholar 

  8. L. Pechenik and H. Levine. Phys. Rev. E 59:3893 (1999).

    Article  ADS  Google Scholar 

  9. E. Ben-Jacob, et al. Physica D 14:348 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. E. Brener, H. Levine, and Y. Tu. Phys. Rev. Lett. 66:1978 (1991).

    Article  PubMed  ADS  Google Scholar 

  11. T. B. Kepler and A. S. Perelson. PNAS 92:8219 (1995).

    Article  PubMed  MATH  ADS  Google Scholar 

  12. Progress has also been made on proving that modelling the stochastic process by adding appropriate multiplicative noise to the mean-field reaction-diffusion equation introduces qualitative changes to the nature of the solution, in particular producing a reaction zone with compact support. See C. Mueller and R. B. Sowers. J. Funct. Anal. 128:439 (1995). See also J. G. Conlon and C R. Doering, “On Travelling Waves for the Stochastic Fisher-Kolmogorov-Petrovsky-Piscunov Equation”, (preprint) who obtain bounds on the front velocity.

  13. D. A. Kessler and H. Levine., Nature 394:556 (1998).

    Article  ADS  Google Scholar 

  14. E. Moro, Phys. Rev. Lett. 87:238303 (2001).

    Article  PubMed  ADS  Google Scholar 

  15. E. Cohen, D. A. Kessler, and H. Levine., Phys. Rev. Lett. 94:158302 (2005).

    Article  PubMed  ADS  Google Scholar 

  16. E. Cohen, D. A. Kessler, and H. Levine., in preparation.

  17. Experimental propagation against a gradient appears in D. Giller, et al., Phys. Rev. B 63:220502(R) (2001).

  18. M. Freidlin, in P. L. Hennequin, ed., Lecture Notes in Mathematics 1527 (Springer-Verlag, Berlin, 1992).

  19. L. S. Tsimring, H. Levine and D. A. Kessler., Phys. Rev. Lett. 76:4440 (1996).

    Article  PubMed  ADS  Google Scholar 

  20. D. A. Kessler, D. Ridgway, H. Levine, and L. Tsimring., J. Stat. Phys. 87:519 (1997).

    Article  MATH  Google Scholar 

  21. I. M. Rouzine, J. Wakeley, and J. M. Coffin., PNAS 100:587 (2003).

    Article  PubMed  ADS  Google Scholar 

  22. E. Cohen, D. A. Kessler and H. Levine., Phys. Rev. Lett. 94: 098102 (2005).

    Google Scholar 

  23. R. E. Snyder., Ecology 84:1333 (2003).

    Article  Google Scholar 

  24. P. J. Gerrish and R. E. Lenski., Genetica 102/103:127 (1998).

    Article  Google Scholar 

  25. For a study of Fisher dynamics with Lévy flight transport, without a consideration of cutoff/stochastic effects, see D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch., Phys. Rev. Lett. 91:018302 (2003).

    Google Scholar 

  26. L. I. Slepyan., Sov. Phys. Dokl. 26:538 (1981).

    MATH  ADS  Google Scholar 

  27. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, (Springer, New York, 1999), Sec. 5.5.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, E., Kessler, D.A. Front Propagation Dynamics with Exponentially-Distributed Hopping. J Stat Phys 122, 925–948 (2006). https://doi.org/10.1007/s10955-005-9004-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-9004-8

KEY WORDS:

Navigation