Skip to main content
Log in

Heat Transport in Harmonic Lattices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We work out the non-equilibrium steady state properties of a harmonic lattice which is connected to heat reservoirs at different temperatures. The heat reservoirs are themselves modeled as harmonic systems. Our approach is to write quantum Langevin equations for the system and solve these to obtain steady state properties such as currents and other second moments involving the position and momentum operators. The resulting expressions will be seen to be similar in form to results obtained for electronic transport using the non-equilibrium Green’s function formalism. As an application of the formalism we discuss heat conduction in a harmonic chain connected to self-consistent reservoirs. We obtain a temperature dependent thermal conductivity which, in the high-temperature classical limit, reproduces the exact result on this model obtained recently by Bonetto, Lebowitz and Lukkarinen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Ziman, Principles of the theory of solids, Second Edition (Cambridge University Press, 1972), pp. 71.

  2. F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, Fourier’s law: a challenge to theorists, in A. Fokas, A. Grigoryan, T. Kibble, and B. Zegarlinski (eds.), Mathematical Physics 2000, (Imperial College Press, London, 2000), pp. 128–150.

    Google Scholar 

  3. S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices, Phys. Rep. 377:1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Hatano, Heat conduction in the diatomic Toda lattice revisited, Phys. Rev. E 59:R1 (1999); A. Dhar, Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses, Phys. Rev. Lett. 86:3554 (2001); B. Li, H. Zhao, and B. Hu, Can Disorder Induce a Finite Thermal Conductivity in 1D Lattices? Phys. Rev. Lett. 86:63 (2001); P. Grassberger, W. Nadler, and L. Yang, Heat conduction and entropy production in a one-dimensional hard-particle gas, Phys. Rev. Lett. 89:180601 (2002); A. V. Savin, G. P. Tsironis, and A. V. Zolotaryuk, Heat conduction in one-dimensional systems with hard-point interparticle interactions, Phys. Rev. Lett. 88:154301 (2002); G. Casati and T. Prosen, Anomalous heat conduction in a one-dimensional ideal gas, Phys. Rev. E 67:015203(R) (2003); J. S. Wang and B. Li, Intriguing heat conduction of a chain with transverse motions, Phys. Rev. Lett. 92:074302 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Lepri, R. Livi, and A. Politi, Heat conduction in chains of nonlinear oscillators, Phys. Rev. Lett. 78:1896 (1997).

    Article  ADS  Google Scholar 

  6. O. Narayan and S. Ramaswamy, Anomalous heat conduction in one-dimensional momentum-conserving systems, Phys. Rev. Lett. 89:200601 (2002).

    Article  ADS  Google Scholar 

  7. A. Dhar, Heat conduction in the disordered harmonic chain revisited, Phys. Rev. Lett. 86:5882 (2001).

    Article  ADS  Google Scholar 

  8. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, 1995).

  9. Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, 1997).

  10. H. Spohn, The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics, math-ph/0505025.

  11. Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a harmonic crystal in a stationary nonequilibrium state, J. Math. Phys. 8:1073 (1967).

    Article  Google Scholar 

  12. R. Rubin and W. Greer, Abnormal lattice thermal conductivity of a one-dimensional, harmonic, isotopically disordered crystal, J. Math. Phys. (N.Y.) 12, 1686 (1971).

    Article  Google Scholar 

  13. A. J. O’Connor and J. L. Lebowitz, Heat conduction and sound transmission in isotopically disordered harmonic crystals, J. Math. Phys. 15:692 (1974).

    Article  MathSciNet  Google Scholar 

  14. L. W. Lee and A. Dhar, Heat Conduction in a two-dimensional harmonic crystal with disorder, Phys. Rev. Lett. 95:094302 (2005).

    Article  ADS  Google Scholar 

  15. G. Y. Hu and R. F. O’Connell, Quantum transport for a many-body system using a quantum Langevin-equation approach, Phys. Rev. B 36:5798 (1987).

    Article  ADS  Google Scholar 

  16. A. N. Cleland, J. M. Schmidt, and J. Clarke, Influence of the environment on the Coulomb blockade in submicrometer normal-metal tunnel junctions, Phys. Rev. B 45:2950 (1992); G. Y. Hu and R. F. O’Connell, Charge fluctuations and zero-bias resistance in small-capacitance tunnel junctions, Phys. Rev. B 49:16505 (1994), Phys. Rev. B 46:14219 (1992).

    Article  ADS  Google Scholar 

  17. Y.-C. Chen, J. L. Lebowitz, and C. Liverani, Dissipative quantum dynamics in a boson bath, Phys. Rev. B 40:4664 (1989).

    Article  ADS  Google Scholar 

  18. U. Zurcher and P. Talkner, Quantum-mechanical harmonic chain attached to heat baths. II. Nonequilibrium properties, Phys. Rev. A 42:3278 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Saito, S. Takesue, and S. Miyashita, Energy transport in the integrable system in contact with various types of phonon reservoirs, Phys. Rev. E 61:2397 (2000).

    Article  ADS  Google Scholar 

  20. A. Dhar and B. S. Shastry, Quantum transport using the Ford-Kac-Mazur formalism, Phys. Rev. B 67:195405 (2003).

    Article  ADS  Google Scholar 

  21. D. Segal, A. Nitzan and P. Hanggi, Thermal conductance through molecular wires, J. Chem. Phys. 119:6840 (2003).

    Article  ADS  Google Scholar 

  22. A. Dhar and D. Sen, Nonequilibrium Green’s function formalism and the problem of bound states, Phys. Rev. B 73:085119 (2006).

    Article  ADS  Google Scholar 

  23. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic Press, 1995).

  24. R. Berkovits and S. Feng, Correlations in coherent multiple scattering, Phys. Reps. 238:135 (1994).

    Article  ADS  Google Scholar 

  25. L. G. C. Rego and G. Kirczenow, Quantized thermal conductance of dielectric quantum wires, Phys. Rev. Lett. 81:232 (1998).

    Article  ADS  Google Scholar 

  26. M. P. Blencowe, Quantum energy flow in mesoscopic dielectric structures, Phys. Rev. B 59:4992 (1999).

    Article  ADS  Google Scholar 

  27. T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett. 96:255503 (2006).

    Article  ADS  Google Scholar 

  28. Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68:2512 (1992).

    Article  ADS  Google Scholar 

  29. A. Kamenev, in Nanophysics: Coherence and Transport (Lecture notes of the Les Houches Summer School 2004).

  30. M. Bolsterli, M. Rich, and W. M. Visscher, Simulation of nonharmonic interactions in a crystal by self-consistent reservoirs, Phys. Rev. A 4:1086 (1970).

    Article  ADS  Google Scholar 

  31. M. Rich and W. M. Visscher, Disordered harmonic chain with self-consistent reservoirs, Phys. Rev. B 11:2164 (1975).

    Article  ADS  Google Scholar 

  32. W. M. Visscher and M. Rich, Stationary nonequilibrium properties of a quantum-mechanical lattice with self-consistent reservoirs, Phys. Rev. A 12:675 (1975).

    Article  ADS  Google Scholar 

  33. F. Bonetto, J. L. Lebowitz, and J. Lukkarinen, Fourier’s law for a harmonic crystal with self-consistent reservoirs, J. Stat. Phys. 116:783 (2004).

    Article  MathSciNet  Google Scholar 

  34. K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Measurement of the quantum of thermal conductance, Nature 404:974 (2000).

    Article  ADS  Google Scholar 

  35. M. Buttiker, Small normal-metal loop coupled to an electron reservoir, Phys. Rev. B 32:1846 (1985).

    Article  ADS  Google Scholar 

  36. M. Buttiker, Role of quantum coherence in series resistors, Phys. Rev. B 33:3020 (1986).

    Article  ADS  Google Scholar 

  37. D. Roy and A. Dhar, Electron transport in one-dimensional wires with self-consistent stochastic reservoirs, In preparation.

  38. M. Strass, P. Hanggi, and S. Kohler, Nonadiabatic electron pumping: maximal current with minimal noise, Phys. Rev. Lett. 95:130601 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Dhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhar, A., Roy, D. Heat Transport in Harmonic Lattices. J Stat Phys 125, 801–820 (2006). https://doi.org/10.1007/s10955-006-9235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9235-3

Keywords

Navigation