Skip to main content
Log in

Integrable Structure of Ginibre’s Ensemble of Real Random Matrices and a Pfaffian Integration Theorem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the recent publication (E. Kanzieper and G. Akemann in Phys. Rev. Lett. 95:230201, 2005), an exact solution was reported for the probability p n,k to find exactly k real eigenvalues in the spectrum of an n×n real asymmetric matrix drawn at random from Ginibre’s Orthogonal Ensemble (GinOE). In the present paper, we offer a detailed derivation of the above result by concentrating on the proof of the Pfaffian integration theorem, the key ingredient of our analysis of the statistics of real eigenvalues in the GinOE. We also initiate a study of the correlations of complex eigenvalues and derive a formula for the joint probability density function of all complex eigenvalues of a GinOE matrix restricted to have exactly k real eigenvalues. In the particular case of k=0, all correlation functions of complex eigenvalues are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, M., Forrester, P.J., Nagao, T., van Moerbeke, P.: Classical skew orthogonal polynomials and random matrices. J. Stat. Phys. 99, 141 (2000)

    Article  MATH  Google Scholar 

  2. Agam, O., Bettelheim, E., Wiegmann, P.B., Zabrodin, A.: Viscous fingering and the shape of an electronic droplet in the quantum Hall regime. Phys. Rev. Lett. 88, 236801 (2002)

    Article  ADS  Google Scholar 

  3. Akemann, G.: The complex Laguerre symplectic ensemble of non-Hermitean matrices. Nucl. Phys. B 730, 253 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Akemann, G.: Matrix models and QCD with chemical potential. Int. J. Mod. Phys. A 22, 1077 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Akemann, G., Basile, F.: Massive partition functions and complex eigenvalue correlations in matrix models with symplectic symmetry. Nucl. Phys. B 766, 150 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Bai, Z.D.: Circular law. Ann. Probab. 25, 494 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borodin, A., Sinclair, C.D.: Correlation functions of ensembles of asymmetric real matrices. arXiv: 0706.2670 (2007)

  9. Borodin, A., Strahov, E.: Averages of characteristic polynomials in random matrix theory. Commun. Pure Appl. Math. LVIII, 0001 (2005)

    Google Scholar 

  10. Chalker, J.T., Mehlig, B.: Eigenvector statistics in non-Hermitean random matrix ensembles. Phys. Rev. Lett. 81, 3367 (1998)

    Article  ADS  Google Scholar 

  11. Dyson, F.J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19, 235 (1970)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Dyson, F.J.: Quaternion determinants. Helv. Phys. Acta 49, 289 (1972)

    Google Scholar 

  13. Edelman, A.: The probability that a random real Gaussian matrix has k real eigenvalues. Related distributions, and the circular law. J. Mult. Anal. 60, 203 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Edelman, A., Kostlan, E., Shub, M.: How many eigenvalues of a random matrix are real? J. Am. Math. Soc. 7, 247 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Efetov, K.B.: Directed quantum chaos. Phys. Rev. Lett. 79, 491 (1997)

    Article  ADS  Google Scholar 

  16. Efetov, K.B.: Quantum disordered systems with a direction. Phys. Rev. B 56, 9630 (1997)

    Article  ADS  Google Scholar 

  17. Eynard, B.: Asymptotics of skew orthogonal polynomials. J. Phys. A: Math. Gen. 34, 7591 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Forrester, P.J. Log-Gases and Random Matrices. Web-book (2005)

  19. Forrester, P.J., Nagao, T.: Eigenvalue statistics of the real Ginibre ensemble. Phys. Rev. Lett. 99, 050603 (2007)

    Article  ADS  Google Scholar 

  20. Fyodorov, Y.V., Sommers, H.-J.: Random matrices close to Hermitean or unitary: Overview of methods and results. J. Phys. A: Math. Gen. 36, 3303 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Fyodorov, Y.V., Khoruzhenko, B., Sommers, H.-J.: Almost Hermitean random matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics. Phys. Rev. Lett. 79, 557 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 19, 133 (1965)

    Google Scholar 

  23. Girko, V.L.: Circle law. Theory Probab. Appl. 29, 694 (1984)

    Article  MathSciNet  Google Scholar 

  24. Girko, V.L.: Elliptic law. Theory Probab. Appl. 30, 677 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Grobe, R., Haake, F., Sommers, H.-J.: Quantum distinction of regular and chaotic dissipative motion. Phys. Rev. Lett. 61, 1899 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  26. Grobe, R., Haake, F.: Universality of cubic-level repulsion for dissipative quantum chaos. Phys. Rev. Lett. 62, 2893 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Guhr, T., Müller-Groeling, A., Weidenmüller, H.A.: Random matrix theories in quantum physics: Common concepts. Phys. Reports 299, 189 (1998)

    Article  ADS  Google Scholar 

  28. Halasz, M.A., Osborn, J.C., Verbaarschot, J.J.M.: Random matrix triality at nonzero chemical potential. Phys. Rev. D 56, 7059 (1997)

    Article  ADS  Google Scholar 

  29. Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. B 17, 75 (1918)

    Article  Google Scholar 

  30. Jack, H.: A class of polynomials in search of a definition, or the symmetric group parameterized. In: Kuznetsov, V.B., Sahi, S. (eds.) Jack, Hall-Littlewood and Macdonald polynomials. Contemporary Mathematics Series. AMS, Providence (2006)

    Google Scholar 

  31. Janik, R.A., Nörenberg, W., Nowak, M.A., Papp, G., Zahed, I.: Correlations of eigenvectors for non-Hermitean random-matrix models. Phys. Rev. E 60, 2699 (1999)

    Article  ADS  Google Scholar 

  32. Kanzieper, E.: Eigenvalue correlations in non-Hermitean symplectic random matrices. J. Phys. A: Math. Gen. 35, 6631 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Kanzieper, E.: Replica field theories, Painlevé transcendents, and exact correlation functions. Phys. Rev. Lett. 89, 250201 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kanzieper, E.: Exact replica treatment of non-Hermitean complex random matrices. In: Kovras, O. (ed.) Frontiers in Field Theory, p. 23. Nova Science Publishers, New York (2005)

    Google Scholar 

  35. Kanzieper, E., Akemann, G.: Statistics of real eigenvalues in Ginibre’s ensemble of random real matrices. Phys. Rev. Lett. 95, 230201 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  36. Khoruzhenko, B.A., Mezzadri, F.: Private communication (2005)

  37. Kolesnikov, A.V., Efetov, K.B.: Distribution of complex eigenvalues for symplectic ensembles of non-Hermitean matrices. Waves Random Media 9, 71 (1999)

    Article  MATH  ADS  Google Scholar 

  38. Kwapień, J., Drożdż, S., Ioannides, A.A.: Temporal correlations versus noise in the correlation matrix formalism: An example of the brain auditory response. Phys. Rev. E 62, 5557 (2000)

    Article  ADS  Google Scholar 

  39. Kwapień, J., Drożdż, S., Górski, A.Z., Oświęcimka, P.: Asymmetric matrices in an analysis of financial correlations. Acta Phys. Polonica B37, 3039 (2006)

    ADS  Google Scholar 

  40. Le Caër, G., Ho, J.S.: The Voronoi tessellation generated from eigenvalues of complex random matrices. J. Phys. A: Math. Gen. 23, 3279 (1990)

    Article  ADS  Google Scholar 

  41. Le Caër, G., Delannay, R.: Topological models of 2D fractal cellular structures. J. Phys. I (France) 3, 1777 (1993)

    Article  Google Scholar 

  42. Lehmann, N., Sommers, H.J.: Eigenvalue statistics of random real matrices. Phys. Rev. Lett. 67, 941 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  44. Mahoux, G., Mehta, M.L.: A method of integration over matrix variables. J. Phys. I (France) 1, 1093 (1991)

    Article  MathSciNet  Google Scholar 

  45. Markum, H., Pullirsch, R., Wettig, T.: Non-Hermitean random matrix theory and lattice QCD with chemical potential. Phys. Rev. Lett. 83, 484 (1999)

    Article  ADS  Google Scholar 

  46. Mehlig, B., Chalker, J.T.: Statistical properties of eigenvectors in non-Hermitean Gaussian random matrix ensembles. J. Math. Phys. 41, 3233 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Mehta, M.L.: A note on certain multiple integrals. J. Math. Phys. 17, 2198 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Mehta, M.L.: Random Matrices. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  49. Mehta, M.L., Srivastava, P.K.: Correlation functions for eigenvalues of real quaternion matrices. J. Math. Phys. 7, 341 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  50. Mineev-Weinstein, M., Wiegmann, P.B., Zabrodin, A.: Integrable structure of interface dynamics. Phys. Rev. Lett. 84, 5106 (2000)

    Article  ADS  Google Scholar 

  51. Muirhead, R.J.: Aspects of Multivariate Statistical Theory. Wiley, New York (1982)

    MATH  Google Scholar 

  52. Nagao, T., Nishigaki, S.M.: Massive random matrix ensembles at β=1 and 4: QCD in three dimensions. Phys. Rev. D 63, 045011 (2001)

    Article  ADS  Google Scholar 

  53. Nishigaki, S.M., Kamenev, A.: Replica treatment of non-Hermitean disordered Hamiltonians. J. Phys. A: Math. Gen. 35, 4571 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Osborn, J.C.: Universal results from an alternate random matrix model for QCD with a baryon chemical potential. Phys. Rev. Lett. 93, 222001 (2004)

    Article  ADS  Google Scholar 

  55. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 2. Gordon and Breach, New York (1986)

    Google Scholar 

  56. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 3. Gordon and Breach, New York (1990)

    Google Scholar 

  57. Sinclair, C.D.: Averages over Ginibre’s ensemble of random real matrices. Int. Math. Res. Not. 2007, rnm015 (2007)

  58. Sommers, H.J.: Symplectic structure of the real Ginibre ensemble. J. Phys. A: Math. Theor. 40, F671 (2007)

    Article  MATH  ADS  Google Scholar 

  59. Sommers, H.J., Crisanti, A., Sompolinsky, H., Stein, Y.: Spectrum of large random asymmetric matrices. Phys. Rev. Lett. 60, 1895 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  60. Sompolinsky, H., Crisanti, A., Sommers, H.J.: Chaos in random neural networks. Phys. Rev. Lett. 61, 259 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  61. Splittorff, K., Verbaarschot, J.J.M.: Factorization of correlation functions and the replica limit of the Toda lattice equation. Nucl. Phys. B 683, 467 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  62. Stephanov, M.: Random matrix model of QCD at finite density and the nature of the quenched limit. Phys. Rev. Lett. 76, 4472 (1996)

    Article  ADS  Google Scholar 

  63. Timme, M., Wolf, F., Geisel, T.: Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Phys. Rev. Lett. 89, 258701 (2002)

    Article  ADS  Google Scholar 

  64. Timme, M., Wolf, F., Geisel, T.: Topological speed limits to network synchronization. Phys. Rev. Lett. 92, 074101 (2004)

    Article  ADS  Google Scholar 

  65. Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J. Stat. Phys. 92, 809 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  66. Wigner, E.P.: Statistical properties of real symmetric matrices with many dimensions. In: Proc. 4th Can. Math. Cong. (Toronto), p. 174 (1957)

  67. Wigner, E.P.: The unreasonable effectiveness of mathematics in natural sciences. Commun. Pure Appl. Math. 13, 1 (1960)

    Article  MATH  Google Scholar 

  68. Zabrodin, A.: New applications of non-Hermitean random matrices. In: Iagolnitzer, D., Rivasseau, V., Zinn-Justin, J. (eds.) Proceedings of the International Conference on Theoretical Physics (TH-2002). Birkhäuser, Basel (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Kanzieper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akemann, G., Kanzieper, E. Integrable Structure of Ginibre’s Ensemble of Real Random Matrices and a Pfaffian Integration Theorem. J Stat Phys 129, 1159–1231 (2007). https://doi.org/10.1007/s10955-007-9381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9381-2

Keywords

Navigation