Skip to main content
Log in

First-Order Phase Transition in a Modified Ziff-Gulari-Barshad Model with Self-oscillating Reactant Coverages

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using kinetic Monte Carlo simulations, we study the effect of oscillatory kinetics due to surface reconstructions on Ziff-Gulari-Barshad (ZGB) model discontinuous phase transition. To investigate the transition, we do extensive finite size scaling analysis. It is found that the discontinuous transition still exists. On inclusion of desorption in the model, the order-parameter probability distribution broadens but remains bimodal. That is, the first-order phase transition becomes weaker with increase in desorption rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christmann, K.: Introduction to Surface Physical Chemistry. Steinkopff Verlag, Darmstadt (1991)

    Google Scholar 

  2. Zhdanov, V.P., Kazemo, B.: Kinetic phase transitions in simple reactions on solid surfaces. Surf. Sci. Rep. 20, 113–189 (1994)

    Article  ADS  Google Scholar 

  3. Hinrichsen, H.: Nonequilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815–958 (2000)

    Article  ADS  Google Scholar 

  4. Odor, G.: Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76, 663–724 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Ziff, R.M., Gulari, E., Barshad, Y.: Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56, 2553–2556 (1986)

    Article  ADS  Google Scholar 

  6. Marro, J., Dickman, R.: Nonequilibrium Phase Transitions in Lattice Models. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  7. Evans, J.W., Ray, T.R.: Interface propagation and nucleation phenomena for discontinuous poisoning transitions in surface-reaction models. Phys. Rev. E 50, 4302–4314 (1994)

    Article  ADS  Google Scholar 

  8. Goodman, R.H., Graff, D.S., Sander, L.M., Leroux-Hugon, P., Clément, E.: Trigger waves in a model for catalysis. Phys. Rev. E 52, 5904–5909 (1995)

    Article  ADS  Google Scholar 

  9. Evans, J.W., Miesch, M.S.: Characterizing kinetics near a first-order catalytic-poisoning transition. Phys. Rev. Lett. 66, 833–836 (1991)

    Article  ADS  Google Scholar 

  10. Loscar, E., Albano, E.V.: Critical behaviour of irreversible reaction systems. Rep. Prog. Phys. 66, 1343–1382 (2003)

    Article  ADS  Google Scholar 

  11. Machado, E., Buendía, G.M., Rikvold, P.A.: Decay of metastable phases in a model for the catalytic oxidation of CO. Phys. Rev. E 71, 031603 (2005)

    Article  ADS  Google Scholar 

  12. Liu, Da-Jiang, Evans, J.W.: Atomistic and multiscale modeling of CO-oxidation on Pd(100) and Rh(100): from nanoscale fluctuations to mesoscale reaction fronts. Surf. Sci. 603, 1706–1716 (2009)

    Article  ADS  Google Scholar 

  13. Schlögl, F.: Chemical reaction models for non-equilibrium phase transitions. Z. Phys. 253, 147–161 (1972)

    Article  ADS  Google Scholar 

  14. Grassberger, P.: On phase transitions in Schlögl’s second model. Physica B, Condens. Matter 47, 365–374 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  15. Guo, X., Liu, Da-Jiang, Evans, J.W.: Schloegl’s second model for autocatalysis with particle diffusion: lattice-gas realization exhibiting generic two-phase coexistence. J. Chem. Phys. 130, 074106 (2009)

    Article  ADS  Google Scholar 

  16. Engel, T., Ertl, G.: Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. Adv. Catal. 28, 1–78 (1979)

    Article  Google Scholar 

  17. Meakin, P.: Simple models for heterogeneous catalysis with a poisoning transition. J. Chem. Phys. 93, 2903–2910 (1990)

    Article  ADS  Google Scholar 

  18. Tambe, S.S., Jayaraman, V.K., Kulkarni, B.D.: Cellular automata modelling of a surface catalytic reaction with Eley-Rideal step: the case of CO oxidation. Chem. Phys. Lett. 225, 303–308 (1994)

    Article  ADS  Google Scholar 

  19. Mukherjee, A.K., Sinha, I.: Effect of the Eley-Rideal step on catalytic oxidation of CO under periodic external pressure. Appl. Surf. Sci. 255, 6168–6172 (2009)

    Article  ADS  Google Scholar 

  20. Ehsasi, M., Matloch, M., Frank, O., Block, J.H., Christmann, K., Rys, F.S., Hirschwald, W.: Steady and nonsteady rates of reaction in a heterogeneously catalyzed reaction: oxidation of CO on platinum, experiments and simulations. J. Chem. Phys. 91, 4949–4960 (1989)

    Article  ADS  Google Scholar 

  21. Tome, T., Dickman, R.: Ziff-Gulari-Barshad model with CO desorption: an Ising-like nonequilibrium critical point. Phys. Rev. E 47, 948–952 (1993)

    Article  ADS  Google Scholar 

  22. Buendía, G.M., Machado, E., Rikvold, P.A.: Effect of CO desorption and coadsorption with O on the phase diagram of a Ziff-Gulari-Barshad model for the catalytic oxidation of CO. J. Chem. Phys. 131, 184704 (2009)

    Article  ADS  Google Scholar 

  23. Sinha, I., Mukherjee, A.K.: Ziff-Gulari-Barshad model with CO desorption under oscillating reactant pressure. Physica A 389, 3128–3133 (2010)

    Article  ADS  Google Scholar 

  24. Machado, E., Buendía, G.M., Rikvold, P.A., Ziff, R.M.: Response of a catalytic reaction to periodic variation of the CO pressure: increased CO2 production and dynamic phase transition. Phys. Rev. E 71, 016120 (2005)

    Article  ADS  Google Scholar 

  25. Imbihl, R., Ertl, G.: Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–733 (1995)

    Article  Google Scholar 

  26. Sales, B.C., Turner, J.E., Maple, M.B.: Oscillatory oxidation of CO over Pt, Pd and Ir catalysts: theory. Surf. Sci. 114, 381–394 (1982)

    Article  ADS  Google Scholar 

  27. Noussiou, V.K., Provata, A.: Kinetic Monte Carlo simulations of the oscillatory CO oxidation at high pressures: the surface oxide model. Chem. Phys. 348, 11–20 (2008)

    Article  ADS  Google Scholar 

  28. Graham, M.D., Bar, M., Kevrekidis, I.G., Asakura, K., Lauterbach, J., Rotermund, H.H., Ertl, G.: Catalysis on microstructured surfaces: pattern formation during CO oxidation in complex Pt domains. Phys. Rev. E 52, 76–93 (1995)

    Article  ADS  Google Scholar 

  29. Wolff, J., Papathanasiou, A.G., Rotermund, H.H., Ertl, G., Katsoulakis, M.A., Li, X., Kevrekidis, I.G.: Wave initiation through spatiotemporally controllable perturbations. Phys. Rev. Lett. 90, 148301-4 (2003)

    ADS  Google Scholar 

  30. Dickman, R.: Kinetic phase transitions in a surface-reaction model: mean-field theory. Phys. Rev. A 34, 4246–4250 (1986)

    Article  ADS  Google Scholar 

  31. Albano, E.V.: A dimer–monomer catalyzed reaction process with surface reconstruction coupled to reactant coverages. Langmuir 13, 4013–4017 (1997)

    Article  Google Scholar 

  32. Albano, E.V.: On the influence of reactant’s induced surface transformations in the behavior of a heterogeneously catalyzed dimer–monomer reaction model. J. Chem. Phys. 109, 7498–7505 (1998)

    Article  ADS  Google Scholar 

  33. Eiswirth, M., Möller, P., Wetzl, K., Imbihl, R., Ertl, G.: Mechanisms of spatial self-organization in isothermal kinetic oscillations during the catalytic CO oxidation on Pt single crystal surfaces. J. Chem. Phys. 90, 510–521 (1989)

    Article  ADS  Google Scholar 

  34. Imbihl, R., Cox, M.P., Ertl, G.: Kinetic oscillations in the catalytic CO oxidation on Pt(100): experiments. J. Chem. Phys. 84, 3519–3534 (1986)

    Article  ADS  Google Scholar 

  35. Kortluke, O., Kuzovkov, V.N., von Niessen, W.: Simulation of kinetic oscillations in surface reactions on reconstructing surfaces. J. Chem. Phys. 110, 11523–11533 (1999)

    Article  ADS  Google Scholar 

  36. Provata, A., Noussiou, V.K.: Spatiotemporal oscillations and clustering in the Ziff-Gulari-Barshad model with surface reconstruction. Phys. Rev. E 72, 066108-14 (2005)

    Article  ADS  Google Scholar 

  37. Albano, E.V.: Critical and oscillatory behavior of a dimer-monomer catalyzed reaction process. Phys. Rev. E 57, 6840–6843 (1998)

    Article  ADS  Google Scholar 

  38. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  39. Borgs, C., Kotecký, R.: A rigorous theory of finite-size scaling at first-order phase transitions. J. Stat. Phys. 61, 79–119 (1990)

    Article  ADS  Google Scholar 

  40. Binder, K., Landau, D.P.: Finite-size scaling at first-order phase transitions. Phys. Rev. B 30, 1477–1485 (1984)

    Article  ADS  Google Scholar 

  41. Challa, M.S., Landau, D.P., Binder, K.: Finite-size effects at temperature-driven first-order transitions. Phys. Rev. B 34, 1841–1852 (1986)

    Article  ADS  Google Scholar 

  42. Fisher, M.E., Berker, A.N.: Scaling for first-order phase transitions in thermodynamic and finite systems. Phys. Rev. B 26, 2507–2513 (1982)

    Article  ADS  Google Scholar 

  43. Ngo, V.T., Hoang, D.T., Diep, H.T.: Flat energy-histogram simulation of the phase transition in an Ising fully frustrated lattice. J. Phys., Condens. Matter 23, 226002-7 (2011)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, I., Mukherjee, A.K. First-Order Phase Transition in a Modified Ziff-Gulari-Barshad Model with Self-oscillating Reactant Coverages. J Stat Phys 146, 669–686 (2012). https://doi.org/10.1007/s10955-011-0414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0414-5

Keywords

Navigation