Skip to main content
Log in

Stationary Correlations for the 1D KPZ Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study exact stationary properties of the one-dimensional Kardar-Parisi-Zhang (KPZ) equation by using the replica approach. The stationary state for the KPZ equation is realized by setting the initial condition the two-sided Brownian motion (BM) with respect to the space variable. Developing techniques for dealing with this initial condition in the replica analysis, we elucidate some exact nature of the height fluctuation for the KPZ equation. In particular, we obtain an explicit representation of the probability distribution of the height in terms of the Fredholm determinants. Furthermore from this expression, we also get the exact expression of the space-time two-point correlation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  Google Scholar 

  2. Barabási, A.L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  3. Meakin, P.: Fractals, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Prähofer, M., Spohn, H.: Universal distributions for growth processes in 1+1 dimensions and random matrices. Phys. Rev. Lett. 84, 4882–4885 (2000)

    Article  ADS  Google Scholar 

  7. Baik, J., Rains, E.M.: Limiting distributions for a polynuclear growth model with external sources. J. Stat. Phys. 100, 523–541 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sasamoto, T.: Spatial correlations of the 1D KPZ surface on a flat substrate. J. Phys. A 38, L549–L556 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Sasamoto, T.: Fluctuations of the one-dimensional asymmetric exclusion process using random matrix techniques. J. Stat. Mech., P07007 (2007)

  11. Ferrari, P.: From interacting particle systems to random matrices. J. Stat. Mech., P10016 (2010)

  12. Kriecherbauer, T., Krug, J.: A pedestrian’s view on interacting particle systems, KPZ universality, and random matrices. J. Phys. A 4, 403001 (2010)

    Article  MathSciNet  Google Scholar 

  13. Sasamoto, T., Spohn, H.: The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class. J. Stat. Mech., P11013 (2010)

  14. Corwin, I.: The Kardar-Parisi-Zhang equation and universality class. Random Matrices: Theory Appl. 1, 1130001 (2012)

    Article  MathSciNet  Google Scholar 

  15. Takeuchi, K.A., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)

    Article  ADS  Google Scholar 

  16. Takeuchi, K.A., Sano, M., Sasamoto, T., Spohn, H.: Growing interfaces uncover universal fluctuations behind scale invariance. Sci. Rep. 1, 34 (2011)

    Article  Google Scholar 

  17. Takeuchi, K.A., Sano, M.: Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence. J. Stat. Phys. 147, 853–890 (2012)

    Article  ADS  MATH  Google Scholar 

  18. Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104, 230602 (2010)

    Article  ADS  Google Scholar 

  19. Sasamoto, T., Spohn, H.: Exact height distributions for the KPZ equation with narrow wedge initial condition. Nucl. Phys. B 834, 523–542 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Sasamoto, T., Spohn, H.: The crossover regime for the weakly asymmetric simple exclusion process. J. Stat. Phys. 140, 209–231 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tracy, C.A., Widom, H.: Integral formulas for the asymmetric simple exclusion process. Commun. Math. Phys. 279, 815–844 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Tracy, C.A., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Corwin, I., Quastel, J.: Crossover distributions at the edge of the rarefaction fan. arXiv:1006.1338

  26. Edwards, S.F., Wilkinson, D.R.: The surface statistics of a granular aggregate. Proc. R. Soc. A 381, 17–31 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  27. Alberts, T., Khanin, K., Quastel, J.: Intermediate disorder regime for directed polymers in dimension 1+1. Phys. Rev. Lett. 105, 090603 (2010)

    Article  ADS  Google Scholar 

  28. Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. Europhys. Lett. 90, 20002 (2010)

    Article  ADS  Google Scholar 

  29. Kardar, M.: Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nucl. Phys. B 290, 582–602 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  30. Dotsenko, V.: Bethe ansatz derivation of the Tracy-Widom distribution for one-dimensional directed polymers. Europhys. Lett. 90, 20003 (2010)

    Article  ADS  Google Scholar 

  31. Dotsenko, V.: Replica Bethe ansatz derivation of the Tracy-Widom distribution of the free energy fluctuations in one-dimensional directed polymers. J. Stat. Mech., P07010 (2010)

  32. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. McGuire, J.B.: Study of exactly soluble one-dimensional N-body problems. J. Math. Phys. 5, 622–636 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Calabrese, P., Le Doussal, P.: An exact solution for the KPZ equation with flat initial conditions. Phys. Rev. Lett. 106, 250603 (2011)

    Article  ADS  Google Scholar 

  35. Le Doussal, P., Calabrese, P.: The KPZ equation with flat initial condition and the directed polymer with one free end. J. Stat. Mech., P06001 (2012)

  36. Imamura, T., Sasamoto, T.: Replica approach to the KPZ equation with half brownian motion initial condition. J. Phys. A, Math. Theor. 44, 385001 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  37. Prolhac, S., Spohn, H.: Two-point generating function of the free energy for a directed polymer in a random medium. J. Stat. Mech., P01031 (2011)

  38. Prolhac, S., Spohn, H.: The one-dimensional KPZ equation and the Airy process. J. Stat. Mech., P03020 (2011)

  39. Borodin, A., Corwin, I.: Macdonald processes. arXiv:1111.4408

  40. O’Connell, N.: Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Borodin, A., Corwin, I., Ferrari, P.L.: Free energy fluctuations for directed polymers in random media in 1+1 dimension. arXiv:1204.1024

  42. Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. arXiv:1207.5035

  43. Krug, J., Spohn, H.: Kinetic roughening of growing interfaces. In: Godrèche, C. (ed.) Solids Far from Equilibrium: Growth, Morphology and Defects, pp. 479–582. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  44. Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: Sidoravicius, V. (ed.) In and out of Equilibrium. Progress in Probability, vol. 51, pp. 185–204. Birkhäuser, Boston (2002)

    Chapter  Google Scholar 

  45. Prähofer, M., Spohn, H.: Exact scaling functions for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004)

    Article  ADS  MATH  Google Scholar 

  46. Ferrari, P.L., Spohn, H.: Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265, 1–44 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Baik, J., Ferrari, P.L., Péché, S.: Limit process of stationary TASEP near the characteristic line. Commun. Pure Appl. Math. 63, 1017–1070 (2010)

    MATH  Google Scholar 

  48. Imamura, T., Sasamoto, T.: Exact solution for the stationary Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 108, 190603 (2012)

    Article  ADS  Google Scholar 

  49. Balázs, M., Quastel, J., Seppäläinen, T.: Fluctuation exponent of the KPZ/stochastic Burgers equation. J. Am. Math. Soc. 24, 683–708 (2011)

    Article  MATH  Google Scholar 

  50. Bornemann, F.: On the numerical evaluation of Fredholm determinants. Math. Comput. 79, 871–915 (2010)

    MathSciNet  ADS  MATH  Google Scholar 

  51. Bornemann, F.: On the numerical evaluation of distributions in random matrix theory: a review. Markov Process. Relat. Fields 16, 803–866 (2010)

    MathSciNet  MATH  Google Scholar 

  52. Prolhac, S., Spohn, H.: The height distribution of the KPZ equation with sharp wedge initial condition: numerical evaluations. Phys. Rev. E 84, 011119 (2011)

    Article  ADS  MATH  Google Scholar 

  53. Hairer, M.: Solving the KPZ equation. arXiv:1109.6811

  54. Oxford, S.: The hamiltonian of the quantized non-linear Schrödinger equation. Ph.D. Thesis, UCLA (1979)

  55. Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 145, 139–173 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Prolhac, S., Spohn, H.: The propagator of the attractive delta-Bose gas in one dimension. J. Math. Phys. 52, 122106 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  57. Imamura, T., Sasamoto, T.: Fluctuations of the one-dimensional polynuclear growth model with external sources. Nucl. Phys. B 699, 503–544 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  59. Colaiori, F., Moore, M.A.: Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 86, 3946–3949 (2001)

    Article  ADS  Google Scholar 

  60. Katzav, E., Schwartz, M.: Numerical evidence for stretched exponential relaxations in the Kardar-Parisi-Zhang equation. Phys. Rev. E 69, 052603 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  61. Canet, L., Chaté, H., Delamotte, B., Wschebor, N.: Non-perturbative renormalization group for the Kardar-Parisi-Zhang equation. Phys. Rev. Lett. 104, 150601 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.S. thanks A. Borodin, I. Corwin, P.L. Ferrari, S. Prolhac, J. Quastel and H. Spohn for useful discussions. Both authors would like to thank R.Y. Inoue for enjoyable conversations on related issues. The work of T.I. and T.S. is supported by KAKENHI (22740251) and KAKENHI (22740054) respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Imamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamura, T., Sasamoto, T. Stationary Correlations for the 1D KPZ Equation. J Stat Phys 150, 908–939 (2013). https://doi.org/10.1007/s10955-013-0710-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0710-3

Keywords

Navigation