Skip to main content
Log in

Searchability of Central Nodes in Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Social networks are discrete systems with a large amount of heterogeneity among nodes (individuals). Measures of centrality aim at a quantification of nodes’ importance for structure and function. Here we ask to which extent the most central nodes can be found by purely local search. We find that many networks have close-to-optimal searchability under eigenvector centrality, outperforming searches for degree and betweenness. Searchability of the strongest spreaders in epidemic dynamics tends to be substantially larger for supercritical than for subcritical spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys. Rev. E 64, 046135 (2001)

    Article  ADS  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press, Taylor & Francis, Boca Raton (2006)

    MATH  Google Scholar 

  4. Axelsen, J.B., Bernhardsson, S., Rosvall, M., Sneppen, K., Trusina, A.: Degree landscapes in scale-free networks. Phys. Rev. E 74, 036119 (2006)

    Article  ADS  Google Scholar 

  5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  6. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physica A 272, 173–187 (1999)

    Article  ADS  Google Scholar 

  7. Bascompte, J.: Networks in ecology. Basic Appl. Ecol. 8, 485–490 (2007)

    Article  Google Scholar 

  8. Boguñá, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70, 056122 (2004)

    Article  ADS  Google Scholar 

  9. Boguñá, M., Krioukov, D., Claffy, K.C.: Navigability of complex networks. Nat. Phys. 5, 74–80 (2009)

    Article  Google Scholar 

  10. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4), 1:1–1:26 (2008)

    Article  Google Scholar 

  11. Cohen, R., Havlin, S., ben Avraham, D: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)

    Article  ADS  Google Scholar 

  12. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)

    MATH  Google Scholar 

  13. Diestel, R.: Graph Theory. Springer, Heidelberg (2010)

    Book  Google Scholar 

  14. Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global social networks. Science 301(5634), 827–829 (2003)

    Article  ADS  Google Scholar 

  15. Dorogovtsev, S.: Lectures on Complex Networks. Oxford Master Series in Statistical, Computational, and Theoretical Physics. Oxford University Press, London (2010)

    Book  MATH  Google Scholar 

  16. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633–4636 (2000)

    Article  ADS  Google Scholar 

  17. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Size-dependent degree distribution of a scale-free growing network. Phys. Rev. E 63, 062101 (2001)

    Article  ADS  Google Scholar 

  18. Eguíluz, V.M., Klemm, K.: Epidemic threshold in structured scale-free networks. Phys. Rev. Lett. 89, 108701 (2002)

    Article  ADS  Google Scholar 

  19. Erdős, P., Renyi, A.: On random graphs. Publ. Math. (Debr.) 6, 290–297 (1959)

    Google Scholar 

  20. Gilbert, E.N.: Random graphs. Ann. Math. Stat. 4, 1141–1144 (1959)

    Article  Google Scholar 

  21. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(4), 565–573 (2003)

    Article  Google Scholar 

  22. Grabowicz, P.A., Eguíluz, V.M.: Heterogeneity shapes groups growth in social online communities. Europhys. Lett. 97(2), 28002 (2012)

    Article  ADS  Google Scholar 

  23. Grimmett, G.: Percolation. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1999). books.google.ch/books?id=lTSzVXTOCpIC

    Google Scholar 

  24. Guimerá, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065103 (2003)

    Article  ADS  Google Scholar 

  25. Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. R. Soc. Interface 2(4), 295–307 (2005)

    Article  Google Scholar 

  26. Kitsak, M., Gallos, L.K., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identifying influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)

    Article  Google Scholar 

  27. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)

    Article  ADS  Google Scholar 

  28. Klemm, K., Eguíluz, V.M.: Growing scale-free networks with small-world behavior. Phys. Rev. E 65, 057102 (2002)

    Article  ADS  Google Scholar 

  29. Klemm, K., Eguíluz, V.M.: Highly clustered scale-free networks. Phys. Rev. E 65, 036123 (2002)

    Article  ADS  Google Scholar 

  30. Klemm, K., Serrano, M.A., Eguiluz, V.M., San Miguel, M.: A measure of individual role in collective dynamics. Sci. Rep. 2, 292 (2012)

    Article  Google Scholar 

  31. Koschützki, D., Lehmann, K., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. Lecture Notes in Computer Science, vol. 3418, pp. 16–61. Springer, Berlin/Heidelberg (2005)

    Chapter  Google Scholar 

  32. Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629–4632 (2000). link.aps.org/doi/10.1103/PhysRevLett.85.4629.

    Article  ADS  Google Scholar 

  33. Milgram, S.: The small-world problem. Psychol. Today 1(1), 61–67 (1967)

    MathSciNet  Google Scholar 

  34. Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6(2–3), 161–180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press, London (2011)

    MATH  Google Scholar 

  36. Newman, M.: Networks: An Introduction. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  37. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98(2), 404–409 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  39. Nitschke, J.R.: Systems chemistry: molecular networks come of age. Nature 462, 736–738 (2009)

    Article  ADS  Google Scholar 

  40. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. 104(18), 7332–7336 (2007)

    Article  ADS  Google Scholar 

  41. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65, 036104 (2002)

    Article  ADS  Google Scholar 

  42. Price, D.d.S.: A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27(5), 292–306 (1976)

    Article  Google Scholar 

  43. Rao, A.R., Jana, R., Bandyopadhyay, S.: A Markov chain Monte Carlo method for generating random (0,1)-matrices with given marginals. Indian J. Stat. 58(2), 225–242 (1996)

    MathSciNet  MATH  Google Scholar 

  44. Rosvall, M., Grönlund, A., Minnhagen, P., Sneppen, K.: Searchability of networks. Phys. Rev. E 72, 046117 (2005)

    Article  ADS  Google Scholar 

  45. Sneppen, K., Trusina, A., Rosvall, M.: Hide-and-seek on complex networks. Europhys. Lett. 69(5), 853–859 (2005)

    Article  ADS  Google Scholar 

  46. Thulasiraman, K., Swamy, M.N.S.: Graphs: Theory and Algorithms. Wiley, New York (1991)

    Google Scholar 

  47. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32(4), 425–443 (1969)

    Article  Google Scholar 

  48. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  49. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  ADS  Google Scholar 

  50. Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223, 45–53 (2003)

    Article  MathSciNet  Google Scholar 

  51. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Klemm.

Additional information

The author acknowledges funding from Volkswagenstiftung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemm, K. Searchability of Central Nodes in Networks. J Stat Phys 151, 707–719 (2013). https://doi.org/10.1007/s10955-013-0727-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0727-7

Keywords

Navigation