Skip to main content
Log in

Random Birth-and-Death Networks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, a baseline model termed as random birth-and-death network (RBDN) model is considered, in which at each time step, a new node is added into the network with probability p (\(0<p<1\)) and connected to m old nodes uniformly, or an existing node is deleted from the network with probability \(q=1-p\). This model allows for fluctuations in size, reflecting the behaviour of networks in many different disciplines including physics, ecology and economics. The purpose of this study is to develop the RBDN model and explore its basic statistical properties. For different p, we first discuss the network size of RBDN, then combining the stochastic process rules based Markov chain method and the probability generating function method, we provide the exact solutions of the degree distributions. Finally, the tail characteristics of the degree distributions are explored after simulation verification. Our results show that the tail of the degree distribution for RBDN exhibits a Poisson tail in the case of \(0<p\le 1/2\) and an exponential tail as p approaches to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barábasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MATH  Google Scholar 

  3. Adamic, L.A., Huberman, B.A., Barabasi, A.L., Albert, R., Jeong, H., Bianconi, G.: Power-law distribution of the world wide web. Science 287, 2115a (2000)

    Article  ADS  Google Scholar 

  4. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature (London) 393, 440 (1998)

    Article  ADS  Google Scholar 

  5. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Newman, M.E.: Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001)

    Article  ADS  Google Scholar 

  7. Newman, M.E.: Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)

    Article  ADS  Google Scholar 

  8. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  9. Guimerà, R., Arenas, A., Díaz-Guilera, A., Giralt, F.: Dynamical properties of model communication networks. Phys. Rev. E 66, 026704 (2002)

    Article  ADS  Google Scholar 

  10. Onuttom, N., Iraj, S.: Scaling of load in communications networks. Phys. Rev. E 82, 036102 (2010)

    Google Scholar 

  11. Williams, R.J., Martinez, N.D.: Simple rules yield complex food webs. Nature (London) 404, 180 (2000)

    Article  ADS  Google Scholar 

  12. Barbosa, L.A., Silva, A.C., Silva, J.K.L.: Scaling relations in food webs. Phys. Rev. E 73, 041903 (2006)

    Article  ADS  Google Scholar 

  13. Otto, S.B., Rall, B.C., Brose, U.: Allometric degree distributions facilitate food-web stability. Nature (London) 450, 1226 (2007)

    Article  ADS  Google Scholar 

  14. Holme, P., Saramäi, J.: Temporal networks. Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  15. Posfai, M., Hovel, P.: Structural controllability of temporal networks. N. J. Phys. 16, 123055 (2014)

    Article  MathSciNet  Google Scholar 

  16. Moinet, A., Starnini, M., Pastor-Satorras, R.: Burstiness and aging in social temporal networks. Phys. Rev. Lett. 114(10), 108701 (2015)

    Article  ADS  Google Scholar 

  17. Dorogovtsev, S.N., Mendes, J.F.F.: Scaling properties of scale-free evolving networks: continuous approach. Phys. Rev. E 63, 056125 (2001)

    Article  ADS  Google Scholar 

  18. Moreno, Y., Gómez, J.B., Pacheco, A.F.: Instability of scale-free networks under node-breaking avalanches. Europhys. Lett. 58, 630 (2002)

    Article  ADS  Google Scholar 

  19. Sarshar, N., Roychowdhury, V.: Scale-free and stable structures in complex ad hoc networks. Phys. Rev. E 69, 026101 (2004)

    Article  ADS  Google Scholar 

  20. Slater, J.L., Hughes, B.D., Landman, K.A.: Evolving mortal networks. Phys. Rev. E 73, 066111 (2006)

    Article  ADS  Google Scholar 

  21. Moore, C., Ghoshal, G., Newman, M.E.J.: Exact solutions for models of evolving networks with addition and deletion of nodes. Phys. Rev. E 74, 036121 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  22. Farid, N., Christensen, K.: Evolving networks through deletion and duplication. N. J. Phys. 8, 212 (2006)

    Article  Google Scholar 

  23. Saldaña, J.: Continuum formalism for modeling growing networks with deletion of nodes. Phys. Rev. E 75, 027102 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ben-Naim, E., Krapivsky, P.L.: Addition-deletion networks. J. Phys. A 40, 8607 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Garcia-Domingo, J.L., Juher, D., Saldaña, J.: Degree correlations in growing networks with deletion of nodes. Phys. D 237, 640 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cai, K.-Y., Dong, Z., Liu, K., Wu, X.-Y.: Phase transition on the degree sequence of a random graph process with vertex copying and deletion. Stoch. Process. Appl. 121, 885 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes. Elsevier, New York (2007)

    Google Scholar 

  28. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A 272, 173 (1999)

    Article  Google Scholar 

  29. Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85, 4629 (2000)

    Article  ADS  Google Scholar 

  30. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85, 4633 (2000)

    Article  ADS  Google Scholar 

  31. Dorogovtsev, S.N.: Renormalization group for evolving networks. Phys. Rev. E 67, 045102R (2003)

    Article  ADS  MathSciNet  Google Scholar 

  32. Krapivsky, P.L., Redner, S.: Finiteness and fluctuations in growing networks. J. Phys. A 35, 9517 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Shi, D.H., Chen, Q.H., Liu, L.M.: Markov chain-based numerical method for degree distributions of growing networks. Phys. Rev. E 71, 036140 (2005)

    Article  ADS  Google Scholar 

  34. Zhang, X.J., He, Z.S., He, Z., Lez, R.B.: SPR-based Markov chain method for degree distribution of evolving networks. Phys. A 391, 3350 (2012)

    Article  Google Scholar 

  35. Barrat, A., Weigt, M.: On the properties of small-world network models. Eur. Phys. J. B 13, 547 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (No. 61273015) and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhang.

Appendix: One-Step Transition Probability Matrix \({\varvec{P}}\)

Appendix: One-Step Transition Probability Matrix \({\varvec{P}}\)

Using SPR method [34], the one-step transition probability matrix P has two possibilities:

1.1 Add a Node

  1. i.

    To be an isolated node, node v is connected to other networks, the state of node v turns from ( nk) to \(( {n+1,m})\) or \(( {n+1,n})\), and the one-step transition probability is

    $$\begin{aligned} p_{( {n,k}),( {n+1,m})}= & {} P\left\{ {NK( {t+1})=( {n+1,m})\left| {NK( t)=( {n,k})} \right. } \right\} \nonumber \\= & {} \frac{p}{n+1},\quad n\ge m,0\le k<n \end{aligned}$$
    (38)
    $$\begin{aligned} p_{( {n,k}),( {n+1,n})}= & {} P\left\{ {NK( {t+1})=( {n+1,n})\left| {NK( t)=( {n,k})} \right. } \right\} \nonumber \\= & {} \frac{p}{n+1},\quad n<m,0\le k<n \end{aligned}$$
    (39)
  2. ii.

    Node v is not connected to the new added node, the state of node v turns from ( nk) to \(( {n+1,k})\), and one-step transition probability is

    $$\begin{aligned} p_{( {n,k}),( {n+1,k})}= & {} P\left\{ {NK( {t+1})=( {n+1,k})\left| {NK( t)=( {n,k})} \right. } \right\} \nonumber \\ {}= & {} \frac{n-m}{n+1}p,\quad n\ge m,0\le k<n \end{aligned}$$
    (40)
  3. iii.

    Node v is connected to the new added node, the state of node v turns from ( nk) to \(( {n+1,k+1})\) and one-step transition probability is

    $$\begin{aligned} p_{( {n,k}),( {n+1,k+1})}= & {} P\left\{ {NK( {t+1})=( {n+1,k+1})\left| {NK( t)=( {n,k})} \right. } \right\} \nonumber \\ {}= & {} \frac{m}{n+1}p,\quad n\ge m,0\le k<n \end{aligned}$$
    (41)
    $$\begin{aligned} p_{( {n,k}),( {n+1,k+1})}= & {} P\left\{ {NK( {t+1})=( {n+1,k+1})\left| {NK( t)=( {n,k})} \right. } \right\} \nonumber \\ {}= & {} \frac{n}{n+1}p,\quad n<m,0\le k<n \end{aligned}$$
    (42)

1.2 Delete a Node

Since any node in the network with node v may be deleted with equal probability, we only need to compute the transition probability of nodes not being deleted.

  1. iv.

    The degree of node v is decreased by 1, the state of node v turns from ( nk) to \(( {n-1,k-1})\), and the one-step transition probability is

    $$\begin{aligned} p_{( {n,k}),( {n-1,k-1})}= & {} P\left\{ {NK( {t+1})=( {n-1,k-1})\left| {NK( t)=( {n,k})} \right. } \right\} \nonumber \\= & {} \frac{k}{n-1}q,\quad 1\le k<n \end{aligned}$$
    (43)
    $$\begin{aligned} p_{( {n,0}),( {n,0})} =P\left\{ {NK( {t+1})=( {n,0})\left| {NK( t) =( {n,0})} \right. } \right\} =q,\quad n=1 \end{aligned}$$
    (44)
  2. v.

    The degree of node v remains unchanged, the state of node v turns from ( nk) to \(( {n-1,k})\), and the one-step transition probability is

    $$\begin{aligned} p_{( {n,k}),( {n-1,k})}= & {} P\left\{ {NK( {t+1})=( {n-1,k})\left| {NK( t)=( {n,k})} \right. } \right\} \nonumber \\= & {} \frac{n-1-k}{n-1}q,\;\quad n>k+1\ge 1 \end{aligned}$$
    (45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., He, Z. & Rayman-Bacchus, L. Random Birth-and-Death Networks. J Stat Phys 162, 842–854 (2016). https://doi.org/10.1007/s10955-016-1447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1447-6

Keywords

Navigation