Skip to main content
Log in

Motion Among Random Obstacles on a Hyperbolic Space

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the motion of a particle along the geodesic lines of the Poincaré half-plane. The particle is specularly reflected when it hits randomly-distributed obstacles that are assumed to be motionless. This is the hyperbolic version of the well-known Lorentz Process studied in the Euclidean context. We analyse the limit in which the density of the obstacles increases to infinity and the size of each obstacle vanishes: under a suitable scaling, we prove that our process converges to a Markovian process, namely a random flight on the hyperbolic manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We omit the calculations for sake of brevity. \(\mathcal {M} _{(q,v)}\) depends on (qv) as parameters; for simplicity we will use the notation \(\mathcal {M}\) in the following.

  2. Since \(\mathcal {M}\) preserve distances, it sends circumferences into circumferences.

References

  1. Basile, G., Nota, A., Pulvirenti, M.: A diffusion limit for a test particle in a random distribution of scatterers. J. Stat. Phys. 155, 1087–1111 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Basile, G., Nota, A., Pezzotti, F., Pulvirenti, M.: Derivation of the Fick’s Law for the Lorentz model in a low density regime. Commun. Math. Phys. 336, 1607–1636 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Boldrighini, C., Bunimovitch, C., Sinai, Ya.G.: On the Boltzmann equation for the Lorentz gas. J. Stat. Phys. 32, 477–501 (1983)

  4. Bonahon, F.: Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots, vol. 49. Student Mathematical Library, New Jersey (2009)

    Google Scholar 

  5. Cammarota, V., Orsingher, E.: Cascades of particles moving at finite velocity in hyperbolic spaces. J. Stat. Phys. 133, 1137–1159 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cammarota, V., Orsingher, E.: Travelling randomly on the Poincaré half-plane with a Pythagorean compass. J. Stat. Phys. 130, 455–482 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Cammarota, V., Orsingher, E.: Hitting spheres on hyperbolic space. Theory Probab. Appl. 57(3), 560–587 (2012)

    MathSciNet  Google Scholar 

  8. Desvillettes, L., Ricci, V.: The Boltzmann–Grad limit of a stochastic Lorentz gas in a force field. Bull. Inst. Math. Acad. Sin. (New Series) 2(2), 637–648 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Gallavotti, G.: Rigorous Theory of the Boltzmann Equation in the Lorentz Gas, Nota interna n. 358, Istituto di Fisica, Universitá di Roma (1972). http://ipparco.roma1.infn.it/pagine/deposito/1967-1979/041-bz

  10. Gallavotti, G.: Statistical Mechanics. A Short Treatise. Springer, Berlin (1999)

    MATH  Google Scholar 

  11. Kelbert, M., Suhov, Yu.M: Branching Diffusions on \(H^d\) with variable fission: the Hausdorff dimension of the limiting set. Theory Probab. Appl. 51(1), 155–167 (2007)

  12. Kolokoltsov, V.: Markov Processes, Semigroups and Generators. De Gruyter, Berlin (2011)

    MATH  Google Scholar 

  13. Orsingher, E.: Shot Noise Fields on the Sphere, Bollettino U.M.I., Series VI, vol. 8, pp. 477–496 (1984)

  14. Orsingher, E., De Gregorio, A.: Random motions at finite velocity in a non-euclidean space. Adv. Appl. Probab. 39(2), 588–611 (2007)

    Article  MATH  Google Scholar 

  15. Pinsky, M.A.: Isotropic transport process on a Riemannian manifold. Trans. Am. Math. Soc. 218, 353–360 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Spohn, H.: The Lorentz process converges to a random flight. Commun. Math. Phys. 60, 277–290 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We wish to thank the referees for the appreciation of our work and for the useful remarks. We also thank Dr. Alberto Di Iorio for drawing the pictures of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Ricciuti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orsingher, E., Ricciuti, C. & Sisti, F. Motion Among Random Obstacles on a Hyperbolic Space. J Stat Phys 162, 869–886 (2016). https://doi.org/10.1007/s10955-016-1450-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1450-y

Keywords

Mathematics Subject Classification

Navigation