Skip to main content
Log in

Spectral Properties of Unimodular Lattice Triangulations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Random unimodular lattice triangulations have been recently used as an embedded random graph model, which exhibit a crossover behavior between an ordered, large-world and a disordered, small-world behavior. Using the ergodic Pachner flips that transform such triangulations into another and an energy functional that corresponds to the degree distribution variance, Markov chain Monte Carlo simulations can be applied to study these graphs. Here, we consider the spectra of the adjacency and the Laplacian matrix as well as the algebraic connectivity and the spectral radius. Power law dependencies on the system size can clearly be identified and compared to analytical solutions for periodic ground states. For random triangulations we find a qualitative agreement of the spectral properties with well-known random graph models. In the microcanonical ensemble analytical approximations agree with numerical simulations. In the canonical ensemble a crossover behavior can be found for the algebraic connectivity and the spectral radius, thus combining large-world and small-world behavior in one model. The considered spectral properties can be applied to transport problems on triangulation graphs and the crossover behavior allows a tuning of important transport quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Almeida, G.M.A., Souza, A.M.C.: Quantum transport with coupled cavities on an Apollonian network. Phys. Rev. A 87, 033804 (2013)

    Article  ADS  Google Scholar 

  3. Almendral, J.A., Daz-Guilera, A.: Dynamical and spectral properties of complex networks. New J. Phys. 9(6), 187 (2007)

    Article  ADS  Google Scholar 

  4. Ambjørn, J., Loll, R.: Reconstructing the universe. Phys. Rev. D 72, 064014 (2005)

    Article  ADS  Google Scholar 

  5. Andrade, J.S., Herrmann, H.J., Andrade, R.F.S., da Silva, L.R.: Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. Phys. Rev. Lett. 94, 018702 (2005)

    Article  ADS  Google Scholar 

  6. Aste, T., Gramatica, R., Di Matteo, T.: Exploring complex networks via topological embedding on surfaces. Phys. Rev. E 86, 036109 (2012)

    Article  ADS  Google Scholar 

  7. Aste, T., Rivier, N.: Random cellular froths in spaces of any dimension and curvature. J. Phys. A 28(5), 1381 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Aste, T., Sherrington, D.: Glass transition in self-organizing cellular patterns. J. Phys. A 32, 70497056 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Banerjee, A., Jost, J.: Graph spectra as a systematic tool in computational biology. Discret. Appl. Math. 157(10), 2425–2431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bauer, M., Golinelli, O.: Random incidence matrices: moments of the spectral density. J. Stat. Phys. 103(1–2), 301–337 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Biroli, G., Monasson, R.: A single defect approximation for localized states on random lattices. J. Phys. A 32(24), L255 (1999)

    Article  ADS  Google Scholar 

  13. Bray, A.J., Rodgers, G.J.: Diffusion in a sparsely connected space: a model for glassy relaxation. Phys. Rev. B 38, 11461–11470 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Caputo, P., Martinelli, F., Sinclair, A., Stauffer, A.: Random lattice triangulations: structure and algorithms. Ann. Appl. Probab. 25(3), 1650–1685 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, F., Lu, L.: Complex Graphs and Networks. No. 107 in CBMS Regional Conference Series in Mathematics. American Mathematical Society (2006)

  16. Costa, L.D.F., Oliveira, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 30(3), 329–412 (2011)

    Article  ADS  Google Scholar 

  17. Cvetković, D.M., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Camebridge (2010)

    MATH  Google Scholar 

  18. de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423(1), 53–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Structures for Algorithms and Applications. Springer, Berlin (2010)

    MATH  Google Scholar 

  20. Dean, D.S.: An approximation scheme for the density of states of the Laplacian on random graphs. J. Phys. A 35(12), L153 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ding, X., Jiang, T.: Spectral distributions of adjacency and Laplacian matrices of random graphs. Ann. Appl. Probab. 20(6), 20862117 (2010)

    Article  MathSciNet  Google Scholar 

  22. Du, Z., Liu, Z.: On the Estrada and Laplacian Estrada indices of graphs. Linear Algebra Appl. 435(8), 2065–2076 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dubertret, B., Rivier, N., Peshkin, M.A.: Long-range geometrical correlations in two-dimensional foams. J. Phys. A. 31(3), 879 (1998)

    Article  ADS  MATH  Google Scholar 

  24. Earl, D.J., Deem, M.W.: Parallel tempering: Theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005)

    Article  Google Scholar 

  25. Erdös, P., Rényi, A.: On random graphs. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  26. Erdös, P., Rényi, A.: On the evolution of random graphs. In: Publication of the Mathematical Institute of the Hungarian Academy of Sciences, pp. 17–61 (1960)

  27. Erdös, P., Rényi, A.: On the strength of connectedness of a random graph. Acta Math. Acad. Sci. H. 12(1–2), 261–267 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  28. Estrada, E.: Characterization of 3D molecular structure. Chem. Phys. Lett. 319(56), 713–718 (2000)

    Article  ADS  Google Scholar 

  29. Estrada, E., Rodríguez-Velázquez, J.A.: Spectral measures of bipartivity in complex networks. Phys. Rev. E 72, 046105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. Evangelou, S.N.: Quantum percolation and the Anderson transition in dilute systems. Phys. Rev. B 27, 1397–1400 (1983)

    Article  ADS  Google Scholar 

  31. Evangelou, S.N.: A numerical study of sparse random matrices. J. Stat. Phys. 69(1–2), 361–383 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Evangelou, S.N., Economou, E.N.: Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. Phys. Rev. Lett. 68, 361–364 (1992)

    Article  ADS  Google Scholar 

  33. Farkas, I., Derenyi, I., Palla, G., Vicsek, T.: Equilibrium statistical mechanics of network structures. In: E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (eds.) Complex Networks, Lecture Notes in Physics, vol. 650, pp. 163–187. Springer (2004)

  34. Farkas, I.J., Derényi, I., Barabási, A.L., Vicsek, T.: Spectra of “real-world” graphs: beyond the semicircle law. Phys. Rev. E 64, 026704 (2001)

    Article  ADS  Google Scholar 

  35. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  36. Gervais, C., Wüst, T., Landau, D.P., Xu, Y.: Application of the Wang–Landau algorithm to the dimerization of glycophorin A. J. Chem. Phys 130(21), 215106 (2009)

    Article  ADS  Google Scholar 

  37. Grone, R.D.: Eigenvalues and the degree sequences of graphs. Linear Multilinear Algebra 39, 133–136 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Guhr, T., Müller-Groeling, A., Weidenmüller, H.A.: Random-matrix theories in quantum physics: common concepts. Phys. Rep. 299(46), 189–425 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  39. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Varoquaux, G., Vaught, T., Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, pp. 11–15. Pasadena (2008)

  40. Juhász, F.: On the spectrum of a random graph. In: L. Lovasz, V.T. Sos (eds.) Algebraic Methods in Graph Theory, Colloquia Mathematica Societatis Janos Bolyai, vol. 25 (1981)

  41. Juvan, M., Mohar, B.: Laplace eigenvalues and bandwidth-type invariants of graphs. J. Graph Theory 17(3), 393–407 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kaibel, V., Ziegler, G.M.: Counting lattice triangulations. Lond. Math. Soc. Lect. Note Ser. 307, 277–308 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  ADS  Google Scholar 

  44. Knauf, J.F., Krüger, B., Mecke, K.: Entropy of unimodular lattice triangulations. EPL (Europhys. Lett.) 109(4), 40011 (2015)

    Article  ADS  Google Scholar 

  45. Kownacki, J.P.: Freezing of triangulations. Eur. Phys. J. B 38(3), 485–494 (2004)

    Article  ADS  Google Scholar 

  46. Krüger, B., Schmidt, E.M., Mecke, K.: Unimodular lattice triangulations as small-world and scale-free random graphs. New J. Phys. 17(2), 023013 (2015)

    Article  ADS  Google Scholar 

  47. Kumar, S.: Random matrix ensembles: Wang–Landau algorithm for spectral densities. EPL (Europhys. Lett.) 101(2), 20002 (2013)

    Article  ADS  Google Scholar 

  48. Lawson, C.L.: Transforming triangulations. Discret. Math. 3(4), 365–372 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  49. Lee, J.: New Monte Carlo algorithm: entropic sampling. Phys. Rev. Lett. 71, 211–214 (1993)

    Article  ADS  Google Scholar 

  50. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  51. Mirlin, A.D., Fyodorov, Y.V.: Universality of level correlation function of sparse random matrices. J. Phys. A 24(10), 2273 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Mohar, B.: Isoperimetric numbers of graphs. J. Combin. Theory Ser. B 47(3), 274–291 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mohar, B.: The Laplacian spectrum of graphs. In: Y. Alavi, G. Chartrand, O.R. Oellermann, A.J. Schwenk (eds.) Graph Theory, Combinatorics, and Applications, vol. 2, pp. 871–898. Wiley (1991)

  54. Mohar, B.: Laplace eigenvalues of graphs—a survey. Discret. Math. 109(13), 171–183 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. In: R. Brualdi, S. Friedland, V. Klee (eds.) Combinatorial and Graph-Theoretical Problems in Linear Algebra, The IMA Volumes in Mathematics and Its Applications, vol. 50, pp. 107–151. Springer, New York (1993)

  56. Monasson, R.: Diffusion, localization and dispersion relations on small-world lattices. Eur. Phys. J. B 12(4), 555–567 (1999)

    Article  ADS  Google Scholar 

  57. Mülken, O., Blumen, A.: Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502(23), 37–87 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  58. Newman, M.: Networks. An Introduction. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  59. Newman, M., Watts, D.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(46), 341–346 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Oguey, C., Rivier, N., Aste, T.: Stratifications of cellular patterns: hysteresis and convergence. Eur. Phys. J. B 33(4), 447–455 (2003)

    Article  ADS  Google Scholar 

  61. Pachner, U.: Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten. Abh. Math. Sem. Univ. Hamburg 57, 69–85 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  62. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  63. Rosenblatt, M.: On estimation of a probability density function and mode. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27, 832 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  64. Rovelli, C.: Quantum Gravity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  65. Silverman, B.: Density Estimation for Statistics and Data Analysis. Monographs on Statistics & Applied Probability. Chapman & Hall/CRC, London (1986)

    Book  MATH  Google Scholar 

  66. Song, W.M., Di Matteo, T., Aste, T.: Building complex networks with platonic solids. Phys. Rev. E 85, 046115 (2012)

    Article  ADS  Google Scholar 

  67. Stauffer, A.: A Lyapunov function for Glauber dynamics on lattice triangulations. arXiv:1504.07980 (2015)

  68. Sulanke, T., Lutz, F.H.: Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds. Eur. J. Comb. 30(8), 1965–1979 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sullivan, J.M.: The geometry of bubbles and foams. In: J. Sadoc, N. Rivier (eds.) Foams and Emulsions, NATO Science Series E, vol. 354, pp. 379–402. Springer (1999)

  70. Trinajstić, N.: Graph theory and molecular orbitals. In: D. Bonchev, D. Rouvray (eds.) Chemical Graph Theory: Introduction and Fundamentals, Mathematical Chemistry Series, chap. 6, pp. 235–275. Abacus Press (1991)

  71. van den Heuvel, J., Peji, S.: Using Laplacian eigenvalues and eigenvectors in the analysis of frequency assignment problems. Ann. Oper. Res. 107(1–4), 349–368 (2001)

    Article  MathSciNet  Google Scholar 

  72. Varshney, L.: The wiring economy principle for designing inference networks. IEEE J. Select. Areas Commun. 31(6), 1095–1104 (2013)

    Article  MathSciNet  Google Scholar 

  73. Wang, F., Landau, D.P.: Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys. Rev. E 64, 056101 (2001)

    Article  ADS  Google Scholar 

  74. Wang, F., Landau, D.P.: Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86, 2050–2053 (2001)

    Article  ADS  Google Scholar 

  75. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  ADS  Google Scholar 

  76. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62(3), 548–564 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  77. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67(2), 325–327 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  78. Wüst, T., Landau, D.P.: Versatile approach to access the low temperature thermodynamics of lattice polymers and proteins. Phys. Rev. Lett. 102, 178101 (2009)

    Article  ADS  Google Scholar 

  79. Wüst, T., Landau, D.P.: Optimized Wang–Landau sampling of lattice polymers: ground state search and folding thermodynamics of hp model proteins. J. Chem. Phys. 137(6), 064903 (2012)

    Article  ADS  Google Scholar 

  80. Yu, A., Lu, M., Tian, F.: On the spectral radius of graphs. Linear Algebra Appl. 387, 41–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  81. Zhou, T., Yan, G., Wang, B.H.: Maximal planar networks with large clustering coefficient and power-law degree distribution. Phys. Rev. E 71, 046141 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Krüger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krüger, B., Schmidt, E.M. & Mecke, K. Spectral Properties of Unimodular Lattice Triangulations. J Stat Phys 163, 514–543 (2016). https://doi.org/10.1007/s10955-016-1493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1493-0

Keywords

Navigation