Skip to main content
Log in

Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the n-component \(|\varphi |^4\) lattice spin model (\(n \ge 1\)) and the weakly self-avoiding walk (\(n=0\)) on \(\mathbb Z^d\), in dimensions \(d=1,2,3\). We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as \(r^{-(d+\alpha )}\) with \(\alpha \in (0,2)\). The upper critical dimension is \(d_c=2\alpha \). For \(\varepsilon >0\), and \(\alpha = \frac{1}{2} (d+\varepsilon )\), the dimension \(d=d_c-\varepsilon \) is below the upper critical dimension. For small \(\varepsilon \), weak coupling, and all integers \(n \ge 0\), we prove that the two-point function at the critical point decays with distance as \(r^{-(d-\alpha )}\). This “sticking” of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A.: A complete renormalization group trajectory between two fixed points. Commun. Math. Phys. 276, 727–772 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Abdesselam, A., Chandra, A., Guadagni G.: Rigorous quantum field theory functional integrals over the \(p\)-adics I: anomalous dimensions. arXiv:1302.5971 (2013)

  3. Aizenman, M., Fernández, R.: On the critical behavior of the magnetization in high dimensional Ising models. J. Stat. Phys. 44, 393–454 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bauerschmidt, R., Brydges, D.C., Slade, G.: Scaling limits and critical behaviour of the \(4\)-dimensional \(n\)-component \(|\varphi |^4\) spin model. J. Stat. Phys 157, 692–742 (2014)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. 338, 169–193 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. 337, 817–877 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bauerschmidt, R., Brydges, D.C., Slade, G.: A renormalisation group method. III. Perturbative analysis. J. Stat. Phys 159, 492–529 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Behan, C., Rastelli, L., Rychkov, S., Zan, B.: A scaling theory for long-range to short-range crossover and an infrared duality. J. Phys. A 50, 354002 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bendikov, A., Cygan, W.: \(\alpha \)-stable random walk has massive thorns. Colloq. Math. 138, 105–129 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bendikov, A., Cygan, W., Trojan B.: Limit theorems for random walks. Stoch. Proc. Appl. 127, 3268–3290 (2017)

  11. Brezin, E., Parisi, G., Ricci-Tersenghi, F.: The crossover region between long-range and short-range interactions for the critical exponents. J. Stat. Phys. 157, 855–868 (2014)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Brydges, D.C., Mitter, P.K., Scoppola, B.: Critical \(({\varPhi }^4)_{3,\epsilon }\). Commun. Math. Phys. 240, 281–327 (2003)

    Article  ADS  MATH  Google Scholar 

  13. Brydges, D.C., Slade, G.: A renormalisation group method. I. Gaussian integration and normed algebras. J. Stat. Phys. 159, 421–460 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Brydges, D.C., Slade, G.: A renormalisation group method. II. Approximation by local polynomials. J. Stat. Phys. 159, 461–491 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Brydges, D.C., Slade, G.: A renormalisation group method. IV. Stability analysis. J. Stat. Phys. 159, 530–588 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Brydges, D.C., Slade, G.: A renormalisation group method. V. A single renormalisation group step. J. Stat. Phys. 159, 589–667 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Chen, L.-C., Sakai, A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. 43, 639–681 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. El-Showk, S., Paulos, M.F., Poland, D., Rychkov, S., Simmons-Duffin, D., Vichi, A.: Solving the 3d Ising model with the conformal bootstrap II. \(c\)-minimization and precise critical exponents. J. Stat. Phys. 157, 869–914 (2014)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models. New bounds from an old approach. Commun. Math. Phys. 274, 123–140 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Fisher, M.E., Ma, S., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917–920 (1972)

    Article  ADS  Google Scholar 

  21. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  22. Heydenreich, M.: Long-range self-avoiding walk converges to alpha-stable processes. Ann. I. Henri Poincaré Probab. Stat. 47, 20–42 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Heydenreich, M., van der Hofstad, R., Sakai, A.: Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132, 1001–1049 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Mitter P.: Long range ferromagnets: renormalization group analysis. http://hal.archives-ouvertes.fr/el-01239463 (2013)

  25. Mitter, P.K.: On a finite range decomposition of the resolvent of a fractional power of the Laplacian. J. Stat. Phys. 163, 1235–1246 (2016). Erratum. J. Stat. Phys. 166, 453–455 (2017)

  26. Mitter, P.K.: On a finite range decomposition of the resolvent of a fractional power of the Laplacian II. The torus. J. Stat. Phys. 168, 986–999 (2017)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Mitter, P.K., Scoppola, B.: The global renormalization group trajectory in a critical supersymmetric field theory on the lattice \({{\mathbb{Z}}}^3\). J. Stat. Phys. 133, 921–1011 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Paulos, M.F., Rychkov, S., van Rees, B.C., Zan, B.: Conformal invariance in the long-range Ising model. Nucl. Phys. B 902, 246–291 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Sak, J.: Recursion relations and fixed points for ferromagnets with long-range interactions. Phys. Rev. B 8, 281–285 (1973)

    Article  ADS  Google Scholar 

  30. Salmhofer, M.: Renormalization: An Introduction. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  31. Slade, G.: Critical exponents for long-range \(O(n)\) models below the upper critical dimension. Commun. Math. Phys. (2016, to appear). arXiv:1611.06169

  32. Slade, G., Tomberg, A.: Critical correlation functions for the \(4\)-dimensional weakly self-avoiding walk and \(n\)-component \(|\varphi |^4\) model. Commun. Math. Phys. 342, 675–737 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Suzuki, M., Yamazaki, Y., Igarashi, G.: Wilson-type expansions of critical exponents for long-range interactions. Phys. Lett. 42A, 313–314 (1972)

    Article  ADS  Google Scholar 

  34. Ueltschi, D.: Cluster expansions and correlation functions. Mosc. Math. J. 4, 511–522 (2004)

    MATH  MathSciNet  Google Scholar 

  35. Wu, T.T.: Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model. I. Phys. Rev. 149, 380–401 (1966)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSERC of Canada. We thank Slava Rychkov for helpful correspondence, and an anonymous referee for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin C. Wallace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohmann, M., Slade, G. & Wallace, B.C. Critical Two-Point Function for Long-Range O(n) Models Below the Upper Critical Dimension. J Stat Phys 169, 1132–1161 (2017). https://doi.org/10.1007/s10955-017-1904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1904-x

Keywords

Navigation