Skip to main content
Log in

Approximations of Relaxed Optimal Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In the present paper, we investigate an approximation technique for relaxed optimal control problems. We study control processes governed by ordinary differential equations in the presence of state, target, and integral constraints. A variety of approximation schemes have been recognized as powerful tools for the theoretical studying and practical solving of Infinite-dimensional optimization problems. On the other hand, theoretical approaches to the relaxed optimal control problem with constraints are not sufficiently advanced to yield numerically tractable schemes. The explicit approximation of the compact control set makes it possible to reduce the sophisticated relaxed problem to an auxiliary optimization problem. A given trajectory of the relaxed problem can be approximated by trajectories of the auxiliary problem. An optimal solution of the introduced optimization problem provides a basis for the construction of minimizing sequences for the original optimal control problem. We describe how to carry out the numerical calculations in the context of nonlinear programming and establish the convergence properties of the obtained approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YOUNG, L. C., Lectures on the Calculus of Variations and Optimal Control Theory, Saunders, Philadelphia, Pennsylvania, 1969.

  2. WARGA, J., Optimal Control of Differential and Functional Equations, Academic Press, New York, NY, 1972.

    MATH  Google Scholar 

  3. GAMKRELIDZE, R., Principles of Optimal Control Theory, Plenum Press, London, UK, 1978.

    MATH  Google Scholar 

  4. CESARI, L., Optimization Theory and Applications, Springer, New York, NY, 1983.

    MATH  Google Scholar 

  5. FATTORINI, H. O., Infinite-Dimensional Optimization and Control Theory, Cambridge University Press, Cambridge, UK, 1999.

    MATH  Google Scholar 

  6. ROUBICEK, T., Relaxation in Optimization Theory and Variational Calculus, Wester de Gruyter, Berlin, Germany, 1997.

    MATH  Google Scholar 

  7. FILIPPOV, A. F., On Certain Questions in the Theory of Optimal Control, SIAM Journal on Control, Vol. 1. pp. 76–84, 1962.

    Article  Google Scholar 

  8. GABASOV, R., and KIRILLOVA, F., Qualitative Theory of Optimal Processes, Nauka, Moscow, Russia, 1971 (in Russian).

  9. MORDUKHOVICH, B. S., Discrete Approximations and Refined Euler-Lagrange Conditions for Nonconvex Differential Inclusions, SIAM Journal on Control and Optimization, Vol. 33, pp. 882–915, 1995.

    Article  MathSciNet  Google Scholar 

  10. BUTZEK, S., and SCHMIDT, W. H., Relaxation Gaps in Optimal Control Processes with State Constraints, Variational Calculus, Optimal Control and Applications, Edited by W. H. Schmidt, K. Heier, L. Bittner, and R. Bulirsch, Birkhäuser, Basel, Switzerland, pp. 21–29, 1998.

    Google Scholar 

  11. TICHOMIROV, V. M., Grundprinzipien der Theorie der Extremalaufgaben, Teubner, Leipzig, Germany, 1982.

    MATH  Google Scholar 

  12. DONTCHEV, A. L., and LEMPIO, F., Difference Methods for Differential Inclusions: A Survey, SIAM Review, Vol. 34, pp. 263–294, 1992.

    Article  MathSciNet  Google Scholar 

  13. MALANOWSKI, K., Finite Difference Approximations to Constrained Optimal Control Problems, Optimization and Optimal Control, Lecture Notes in Control and Information Sciences, Springer, New York, NY, pp. 243–254, 1981.

  14. DONTCHEV, A. L., Discrete Approximations in Optimal Control, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, Edited by B. S. Mordukhovich and H. J. Sussmann, Springer, New York, NY, Vol. 78, pp. 59–80, 1996.

  15. PYTLAK, R., Numerical Methods for Optimal Control Problems with State Constraints, Springer, Berlin, Germany, 1999.

    MATH  Google Scholar 

  16. FEDORENKO, R. P., Approximate Solving Optimal Control Problems, Nauka, Moscow, Russia, 1978 (in Russian).

  17. HAGER, W. W., Rate of Convergence for Discrete Approximations to Unconstrained Control Problems, SIAM Journal on Numerical Analysis, Vol. 13, pp.449–471, 1976.

    Article  MathSciNet  Google Scholar 

  18. DONTCHEV, A. L., and HAGER, W. W., Lipschitz Stability in Nonlinear Control and Optimization, SIAM Journal on Control and Optimization, Vol. 31, pp. 569–603, 1993.

    Article  MathSciNet  Google Scholar 

  19. HAGER, W. W., and LANCULESCU, G. D., Dual Approximations in Optimal Control, SIAM Journal on Control and Optimization, Vol. 22, pp. 1061–1080, 1990.

    Google Scholar 

  20. AZHMYAKOV, V., and SCHMIDT, W. H., Explicit Approximations of Relaxed Optimal Control Processes, Optimal Control, Edited by B. Kugelmann, G. Sachs, and W.H. Schmidt, Hieronymus Bücherproduktion GmbH, München, Germany, pp. 179–192, 2003.

    Google Scholar 

  21. VELIOV, V. M., Second-Order Discrete Approximations to Linear Differential Inclusions, SIAM Journal on Numerical Analysis, Vol. 29, pp. 439–451, 1992.

    Article  MathSciNet  Google Scholar 

  22. CLARKE, F. H., Optimal Solutions to Differential Inclusions, Journal of Optimization Theory and Applications, Vol. 19, pp. 469–478, 1976.

    Article  MathSciNet  Google Scholar 

  23. WARGA, J., Controllability, Extremality, and Abnormality in Nonsmooth Optimal Control, Journal of Optimization Theory and Applications, Vol. 41, pp. 239–260, 1983.

    Article  MathSciNet  Google Scholar 

  24. POLAK, E., Optimization, Springer, New York, NY, 1997.

    MATH  Google Scholar 

  25. HAMEL, G., Über eine mit dem Problem der Rakete zusammenhängende Aufgabe, ZAMM, Vol. 7, pp. 451–552, 1927.

    Google Scholar 

  26. MICLE, A., Extremization of Linear Integrals by Green’s Theorem, Optimization Techniques, Edited by G. Leitmann, Academic Press, New York, NY, pp.69–98, 1962.

    Google Scholar 

  27. MAURER, H., Numerical Solution of Singular Control Problems Using Multiple-Shooting Techniques, Journal of Optimization Theory and Applications, Vol. 18, pp. 235–257, 1976.

    Article  MathSciNet  Google Scholar 

  28. STRYK, O., User’s Guide for DIRCOL: A Direct Collocation Method for the Numerical Solution of Optimal Control Problems, Technische Universität, München, Germany, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. J. Oberle

The authors thank the referees for helpful comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azhmyakov, V., Schmidt, W. Approximations of Relaxed Optimal Control Problems. J Optim Theory Appl 130, 61–78 (2006). https://doi.org/10.1007/s10957-006-9085-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-006-9085-9

Key Words

Navigation