Skip to main content
Log in

Multiple Space Debris Collecting Mission—Debris Selection and Trajectory Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper investigates the cost requirement for a space debris collecting mission aimed at removing heavy debris from low Earth orbits. The problem mixes combinatorial optimization to select the debris among a list of candidates and functional optimization to define the orbital manoeuvres. The solving methodology proceeds in two steps: Firstly, a specific transfer strategy with impulsive manoeuvres is defined so that the problem becomes of finite dimension; secondly the problem is linearized around an initial reference solution. A Branch and Bound algorithm is then applied iteratively to optimize simultaneously the debris selection and the orbital manoeuvres, yielding a new reference solution. The optimal solutions found are close to the initial guess despite a very complicated design space. The method is exemplified on a representative application case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Klinkrad, K.: Space Debris Models and Risks Analysis. Springer, Berlin and Heidelberg (2006). ISBN: 3-540-25448-X

    Google Scholar 

  2. Liou, J.: An assessment of the current LEO debris environment and what needs to be done to preserve it for future generations. In: International Conference on Orbital Debris Removal, Brazil, Chantilly, Virginia (2008)

    Google Scholar 

  3. Position paper on space debris mitigation. In: International Academy of Astronautics (2005)

  4. Walker, R., Martin, C.E., Stokes, P.H., Wilkinson, J.E.: Studies of space debris mitigation options using the debris environment long term analysis (DELTA) model. In: 51st International Astronautical Congress, Brazil, Rio de Janeiro, pp. IAA-00_IAA.6.6.07 (2000)

    Google Scholar 

  5. Bastida Virgili, B., Krag, H.: Strategies for active removal in LEO. In: 5th European Conference on Space Debris, Germany. ESOC, Darmstadt (2009)

    Google Scholar 

  6. Leitmann, G.: Optimization techniques. Math. Sci. Eng. 5 (1962)

  7. Trélat, E.: Contrôle Optimal—Théorie et Applications. Vuibert, Paris (2005)

    MATH  Google Scholar 

  8. Lacomme, P., Prins, C., Sevaux, M.: Algorithmes de Graphes, 2ème edn. Eyrolles, Paris (2003)

    Google Scholar 

  9. Schneider, J.J., Kirkpatrick, S.: Stochastic Optimization. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Nemhauser, G.L., Rinnooy Kan, A.H.G., Todd, M.J.: Optimization. Handbooks in Operations Research and Management Science, vol. 1. Elsevier, Amsterdam (1989)

    MATH  Google Scholar 

  11. Minoux, M.: Programmation Mathématique—Théorie et Algorithmes, 2ème edn. Editions Tec&Doc, Lavoisier, Paris (2008)

    MATH  Google Scholar 

  12. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Métaheuristiques Pour L’optimisation Difficile. Eyrolles, Paris (2003)

    Google Scholar 

  13. Oberle, H.J., Taubert, K.: Existence and multiple solutions of the minimum-fuel orbit transfer problem. J. Optim. Theory Appl. 95, 243–262 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gergaud, J., Haberkorn, T.: Orbital transfer: some links between the low-thrust and the impulse cases. Acta Astronaut. 60(6–9), 649–657 (2007)

    Article  Google Scholar 

  15. Minieka, E.: On computing sets of shortest paths in a graph. Manag. Sci. Oper. Res. 17(6) (1974)

  16. Eppstein, D.: Finding the k shortest paths. In: 35th IEEE Symp. Foundations of Comp. Sci., Santa Fe, 1994, pp. 154–165 (1997). Tech. Rep. 94-26

    Google Scholar 

  17. Hershberger, J., Maxel, M., Suri, S.: Finding the k shortest simple paths: a new algorithm and its implementation. ACM Trans. Algorithms 3(4) (2007)

  18. Sedeno-Noda, A., Gonzalez-Martin, C.: On the k shortest path trees problem. Eur. J. Oper. Res. 202, 628–635 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Billionnet, A.: Optimisation Discrète. Dunod, Paris (2007)

    Google Scholar 

  20. Chao, C.: Applied Orbit Perturbation and Maintenance. The Aerospace Press, Reston (2005)

    Google Scholar 

  21. Chobotov, V.: Orbital Mechanics, 3rd edn. AIAA Education Series. AIAA, Washington (2002)

    Book  Google Scholar 

  22. Murakami, J., Hokamoto, S.: Approach for optimal multi-rendezvous trajectory design for active debris removal. In: 61th International Astronautical Congress, Prague, CZ, pp. IAC-10.C1.5.8 (2010)

    Google Scholar 

  23. Chapman, S.J.: Fortran 90/95 for Scientists and Engineers, 2nd edn. McGraw-Hill, New York (2004)

    Google Scholar 

  24. Guéret, C., Prins, C., Sevaux, M.: Programmation Linéaire, 2ème edn. Eyrolles, Paris (2003)

    Google Scholar 

Download references

Acknowledgements

This work was carried out at EADS Astrium Space Transportation in 2010–2011 in the frame of the internal R&D. I am very grateful to Emmanuel Trélat (UPMC, Paris) and Thomas Haberkorn (MAPMO, University of Orléans) for their support and advices in order to write down a comprehensive paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cerf.

Additional information

Communicated by Ryan P. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerf, M. Multiple Space Debris Collecting Mission—Debris Selection and Trajectory Optimization. J Optim Theory Appl 156, 761–796 (2013). https://doi.org/10.1007/s10957-012-0130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0130-6

Keywords

Navigation