Skip to main content
Log in

A Hybrid Time-Scaling Transformation for Time-Delay Optimal Control Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of nonlinear time-delay optimal control problems with canonical equality and inequality constraints. We propose a new computational approach, which combines the control parameterization technique with a hybrid time-scaling strategy, for solving this class of optimal control problems. The proposed approach involves approximating the control variables by piecewise constant functions, whose heights and switching times are decision variables to be optimized. Then, the resulting problem with varying switching times is transformed, via a new hybrid time-scaling strategy, into an equivalent problem with fixed switching times, which is much preferred for numerical computation. Our new time-scaling strategy is hybrid in the sense that it is related to two coupled time-delay systems—one defined on the original time scale, in which the switching times are variable, the other defined on the new time scale, in which the switching times are fixed. This is different from the conventional time-scaling transformation widely used in the literature, which is not applicable to systems with time-delays. To demonstrate the effectiveness of the proposed approach, we solve four numerical examples. The results show that the costs obtained by our new approach are lower, when compared with those obtained by existing optimal control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stengel, R.F., Ghigliazza, R., Kulkarni, N., Laplace, O.: Optimal control of innate immune response. Optim. Control Appl. Methods 23, 91–104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Denis-Vidal, L., Jauberthie, C., Joly-Blanchard, G.: Identifiability of a nonlinear delayed-differential aerospace model. IEEE Trans. Autom. Control 51, 154–158 (2006)

    Article  MathSciNet  Google Scholar 

  3. Chai, Q.Q., Loxton, R., Teo, K.L., Yang, C.H.: A class of optimal state-delay control problems. Nonlinear Anal. Real World Appl. 14, 1536–1550 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chai, Q.Q., Loxton, R., Teo, K.L., Yang, C.H.: A unified parameter identification method for nonlinear time-delay systems. J. Ind. Manag. Optim. 9, 471–486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Göllmann, L., Kern, D., Maurer, H.: Optimal control problems with delays in state and control variables subject to mixed control-state constraints. Optim. Control Appl. Methods 30, 341–365 (2009)

    Article  MathSciNet  Google Scholar 

  6. Manu, M.Z., Mohammad, J.: Time-Delay Systems: Analysis, Optimization and Applications. Elsevier Science Inc, New York (1987)

    MATH  Google Scholar 

  7. Göllmann, L., Maurer, H.: Theory and applications of optimal control problems with multiple time-delays. J. Ind. Manag. Optim. 10, 413–441 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Betts, J.T., Campbell, S.L., Thompson, K.C.: Optimal control software for constrained nonlinear systems with delays. In: Proceedings, IEEE Multi Conference on Systems and Control, pp. 444–449. (2011)

  9. Betts, J.T., Campbell, S.L., Thompson, K.: Optimal control of delay partial differential equations. Control Optim. Differ. Algebr. Constraints, SIAM, Philadelphia 213–231 (2012)

  10. Betts, J.T., Campbell, S.L., Thompson, K.: Direct transcription solution of optimal control problems with control delays. In; AIP Conference Proceedings 1389, 38 (2011). doi:10.1063/1.3636665

  11. Deshmuk, V., Ma, H., Butcher, E.: Optimal control of parametrically excited linear delay differential systems via chebyshev polynomials. Optim. Control Appl. Methods 27(3), 123–136 (2006)

    Article  MathSciNet  Google Scholar 

  12. Teo, K.L., Goh, C.J., Wong, K.H.: A Unified Computational Approach to Optimal Control Problems. Longman Scientific and Technical, Essex (1991)

    MATH  Google Scholar 

  13. Chai, Q.Q., Yang, C.H., Teo, K.L., Gui, W.H.: Time-delay optimal control of an industrial-scale evaporation process sodium aluminate solution. Control Eng. Pract. 20, 618–628 (2012)

    Article  Google Scholar 

  14. Wong, K.H., Jennings, L.S., Benyah, F.: The control parameterization enhancing transform for constrained time-delay optimal control problems. ANZIAM J. 43, E154–E185 (2001/02)

  15. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  16. Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10, 275–309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parameterization enhancing technique for optimal discrete-valued control problems. Automatica 35, 1401–1407 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, H.W.J., Teo, K.L., Rehbock, V., Jennings, L.S.: Control parameterization enhancing technique for time optimal control problems. Dyn. Syst. Appl. 6, 243–262 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Liu, C., Gong, Z., Shen, B., Feng, E.: Modelling and optimal control for a fed-batch fermentation process. Appl. Math. Model. 37, 695–706 (2013)

    Article  MathSciNet  Google Scholar 

  20. Blanchard, E., Loxton, R., Rehbock, V.: Optimal control of impulsive switched systems with minimum subsystem durations. J. Glob. Optim. 4, 737–750 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu, C.J., Li, B., Loxton, R., Teo, K.L.: Optimal discrete-valued control computation. J. Glob. Optim. 56, 503–518 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Sciences Foundation of China (Grant Numbers: 61403428, 11471211, 71221061) and a Discovery project of Australia Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok Lay Teo.

Appendix

Appendix

1.1 Proof of Theorem 3.1

Proof

Let \({\varvec{\delta }}\) and \(r\in \{1,\ldots ,q\}\) be arbitrary but fixed, and let \(\varvec{e}^{r}\) be the rth unit vector in \(\mathbb {R}^{q}\). Then,

$$\begin{aligned} \frac{\partial \bar{\varvec{x}}(s)}{\partial \theta _{r}}=\lim _{\xi \rightarrow 0}\frac{{\bar{\varvec{x}}} (s|{\varvec{\delta }},\varvec{\theta }^{\xi })-{\bar{\varvec{x}}}(s|{\varvec{\delta }},{\varvec{\theta }})}{\xi }, \end{aligned}$$
(41)

where \(\varvec{\theta }^{\xi }=\varvec{\theta }+\xi \varvec{e}^{r}\), \(s_{\text {delay}}^{\xi }\) and \(t_{\text {delay}}^{\xi }\) are the corresponding delayed time points in the new time horizon and the original time horizon such that

$$\begin{aligned} \mu \left( s_{\text {delay}}^{\xi }|{\varvec{\theta }}^{\xi }\right) =t_{\text {delay}}^{\xi } = \mu (s|{\varvec{\theta }}^{\xi })-h, \quad s\in [0,q]. \end{aligned}$$

Now, we will prove the theorem in the following steps.

Step 1: Preliminaries

For each real number \(\xi \in \mathbb {R}\), let \({\bar{\varvec{x}}}^{\xi }\) denote the function \({\bar{\varvec{x}}}\big (\cdot |\varvec{\delta },\varvec{\theta }^{\xi }\big )\). Then, it follows from (20) that, for each \(\xi \in \mathbb {R}\),

$$\begin{aligned} {\bar{\varvec{x}}}^{\xi }(s) = {\bar{\varvec{x}}}(s)+ \displaystyle \int _{0}^{s} \varvec{F}^{\xi }(t)\hbox {d}t,\quad s\in [0,q], \end{aligned}$$
(42)

where \({\bar{\varvec{x}}}(s)\) denotes the function \({\bar{\varvec{x}}}\big (\cdot |\varvec{\delta },\varvec{\theta }\big )\), and \(\varvec{F}^{\xi } \) is defined as follows:

$$\begin{aligned} \varvec{F}^{\xi }(s):=\left\{ \begin{array}{l@{\quad }r} \theta _{\lfloor s\rfloor +1}^{\xi } \varvec{f}\big ( {\bar{\varvec{x}}}(s|\varvec{\delta },\varvec{\theta }^{\xi }), {\bar{\varvec{x}}}\left( s_{\text {delay}}^{\xi }|\varvec{\delta },\varvec{\theta }^{\xi }\right) ,{\varvec{\delta }} \big ), &{}\text {if }s_{\text {delay}}\ge 0,\\ \\ \theta _{\lfloor s\rfloor +1}^{\xi } \varvec{f}\big ({\bar{\varvec{x}}}(s|\varvec{\delta },\varvec{\theta }^{\xi }), {\bar{\varvec{x}}}\left( s_{\text {delay}}^{\xi }|\varvec{\delta },\varvec{\theta }^{\xi }\right) ,{\varvec{\delta }}, \varphi \left( t_{\text {delay}}^{\xi }\right) \big ),&{}\text {if }s_{\text {delay}}<0. \end{array}\right. \end{aligned}$$

Define

$$\begin{aligned} \varGamma ^{\xi }(s)= & {} {\bar{\varvec{x}}}(s|{\varvec{\delta }},\varvec{\theta }^{\xi })-{\bar{\varvec{x}}}(s|{\varvec{\delta }},{\varvec{\theta }})\nonumber \\= & {} \displaystyle \int _{0}^{s}\big (\varvec{F}^{\xi }- \varvec{F}^{0}\big )\hbox {d}t. \end{aligned}$$
(43)

Applying the mean value theorem, we have, for \(s\in [0,q]\),

$$\begin{aligned} \displaystyle \varvec{F}^{\xi }(s)- \varvec{F}^{0}(s)= & {} \displaystyle \int _{0}^{1}\bigg \{ \displaystyle \frac{\partial \varvec{f}\big (\bar{\varvec{x}}+\eta \varGamma ^{\xi }(s),{\bar{\varvec{x}}}_{d}+\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}}\varGamma ^{\xi }(s)\nonumber \\&+\, \displaystyle \frac{\partial \varvec{f}\big (\bar{\varvec{x}}+\eta \varGamma ^{\xi }(s),{\bar{\varvec{x}}}_{d}+\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{d}}({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d})\nonumber \\&+\,\displaystyle \frac{\partial \varvec{f}\big (\bar{\varvec{x}}+\eta \varGamma ^{\xi }(s),{\bar{\varvec{x}}}_{d}+\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )}{\partial \theta _{r}}\xi \bigg \}\hbox {d}\eta , \end{aligned}$$
(44)

and

$$\begin{aligned} {\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}^{0}= & {} {\bar{\varvec{x}}}\left( s_{\text {delay}}^{\xi }|\varvec{\delta },\varvec{\theta }^{\xi }\right) -{\bar{\varvec{x}}}\left( s_{\text {delay}}|\varvec{\delta },\varvec{\theta }\right) \\= & {} {\bar{\varvec{x}}}\left( s_{\text {delay}}^{\xi }|\varvec{\delta },\varvec{\theta }^{\xi }\right) -{\bar{\varvec{x}}}\left( s_{\text {delay}}|\varvec{\delta },\varvec{\theta }^{\xi }\right) +{\bar{\varvec{x}}}\left( s_{\text {delay}}|\varvec{\delta },\varvec{\theta }^{\xi }\right) -{\bar{\varvec{x}}}\left( s_{\text {delay}}|\varvec{\delta },\varvec{\theta }\right) \\= & {} {\bar{\varvec{x}}}\left( s_{\text {delay}}^{\xi }|\varvec{\delta },\varvec{\theta }^{\xi }\right) -{\bar{\varvec{x}}}\left( s_{\text {delay}}|\varvec{\delta },\varvec{\theta }^{\xi }\right) +\varGamma ^{\xi }(s_{\text {delay}}) \end{aligned}$$

From Assumption \(\mathbf A1 \), it follows that the state set \(\{{\bar{\varvec{x}}}^{\xi }(s): \xi \in [-a,a]\}\) is equibounded on [0, q], where \(a>0\) is a fixed small real number. Hence, there exists a real number \(C_{1}>0\) such that for each \(\xi \in [-a,a]\),

$$\begin{aligned} {\bar{\varvec{x}}}^{\xi }(s)\in \mathcal {N}_{n}(C_{1}), \quad s\in [0,q], \end{aligned}$$

where \(\mathcal {N}_{n}(C_{1})\) denotes the closed ball in \(\mathbb {R}^{n}\) of radius \(C_{1}\) centered at the origin. Note that, \(\mathcal {N}_{n}(C_{1})\) is convex, thus, for each \(\xi \in [-a,a]\),

$$\begin{aligned} {\bar{\varvec{x}}}(s)+\eta \varGamma ^\xi (s)\in \mathcal {N}_{n}(C_{1}),\quad s\in [0,q],~\eta \in [0,1]. \end{aligned}$$

Furthermore, it is easy to see that for each \(\xi \in [-a,a]\),

$$\begin{aligned} \varvec{\theta }+\eta \xi \varvec{e}^{r}\in \mathcal {N}_{q}(C_{2}),\quad \eta \in [0,1], \end{aligned}$$

where \(C_{2} :=|\varvec{\theta }|_{q}+a. \) Recall from Assumption \(\mathbf A2 \) that \(\partial \varvec{f}/\partial \varvec{x}\) and \(\partial \varvec{f}/\partial \theta _{r}\) are continuous. Hence, it follows from the compactness of [0, T], \(\mathcal {V}\), \(\mathcal {N}_{n}(C_{1})\) and \(\mathcal {N}_{q}(C_{2})\) and the definitions of \(z(s|\varvec{\theta })\) and \(\phi \) that there exists a real number \(C_{3}>0\) such that, for each \(\xi \in [-a,a]\),

$$\begin{aligned} \bigg |\frac{\partial \varvec{f}^{\xi }_{\eta }}{\partial {\bar{\varvec{x}}}}\bigg |_{n\times n}\le & {} C_{3},\quad s\in [0,q],~\eta \in [0,1],\\ \bigg |\frac{\partial \varvec{f}^{\xi }_{\eta }}{\partial {\bar{\varvec{x}}}_{d}}\bigg |_{n\times n}\le & {} C_{3},\quad s\in [0,q],~\eta \in [0,1],\\ \bigg |\frac{\partial \varvec{f}^{\xi }_{\eta }}{\partial \theta _{r}}\bigg |_{n}\le & {} C_{3},\quad s\in [0,q],~\eta \in [0,1],\\ \bigg |\frac{\partial \phi _{\eta }^{\xi }}{\partial t}\bigg |_{n}\le & {} C_{3},\quad s\in [0,q],~\eta \in [0,1],\\ \end{aligned}$$

where \(\varvec{f}^{\xi }_{\eta }\) denotes \(\varvec{f}\big (\bar{\varvec{x}}+\eta \varGamma ^{\xi }(t),{\bar{\varvec{x}}}_{d}+\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )\), and \(\phi _{\eta }^{\xi }\) denotes \(\phi (\mu (t|\varvec{\theta }+\eta \xi \varvec{e}^{r})-h)\), and \(| \cdot |\) denotes the Euclidian norm.

Step 2: The function \(\varGamma ^{\xi }(s)\) is of order \(\xi \)

Let \(\xi \in [-a,a]\) be arbitrary. When \(s_{\text {delay}}<0\), taking the norm of both sides of (43) and applying the definition of \(C_{3}\) gives

$$\begin{aligned} |\varGamma ^{\xi }(s)|_{n} = \bigg |\int _{0}^{s}\int _{0}^{1}\bigg \{\frac{\partial \varvec{f}^{\xi }_{\eta }}{\partial {\bar{\varvec{x}}}}\varGamma ^{\xi }(t)+ \frac{\partial \varvec{f}^{\xi }_{\eta }}{\partial \theta _{r}}\xi +\frac{\partial \varvec{f}^{\xi }_{\eta }}{\partial {\bar{\varvec{x}}}_{d}}\left( \phi ^{\xi }_{\eta }-\phi ^{0}_{\eta }\right) \bigg \}\hbox {d}\eta \hbox {d}t\bigg |_{n}, \end{aligned}$$
(45)

where

$$\begin{aligned} \phi ^{\xi }_{\eta }-\phi ^{0}_{\eta }= & {} \phi (\mu (t|\varvec{\theta }+\xi \varvec{e}^{r})-h) -\phi (\mu (t|\varvec{\theta })-h)\\= & {} \xi \frac{\partial \phi (\mu (t|\varvec{\theta }+\eta \xi \varvec{e}^{r})-h)}{\partial t}\frac{\partial \mu (t|\varvec{\theta }+\eta \xi \varvec{e}^{r})}{\partial \theta _{r}}, \quad \eta \in [0,1]. \end{aligned}$$

Thus, we have

$$\begin{aligned} |\varGamma ^{\xi }(s)|_{n}\le C_{3}|\xi |+C_{3}^{2}T|\xi |+\int _{0}^{s}C_{3}|\varGamma ^{\xi }(t)|_{n}\hbox {d}t, \quad s_{\text {delay}}<0. \end{aligned}$$
(46)

Applying Gronwall’s Lemma gives

$$\begin{aligned} |\varGamma ^{\xi }(s)|_{n}\le \left( C_{3}+C_{3}^{2}T\right) \exp {(C_{3}q)}|\xi |, \quad s\in [0,P_{1}[. \end{aligned}$$
(47)

When \(s_{\text {delay}}\ge 0\),

where \(P_{1}\) is a time point in the new time horizon such that

$$\begin{aligned} \mu (P_{1}|\varvec{\theta })=h. \end{aligned}$$

Since \(s_{\text {delay}}\ge 0\), it follows from the definition of \(s_{\text {delay}}\) that

$$\begin{aligned} \bigg |\int _{P_{1}}^{s}\int _{0}^{1}\frac{ \partial \varvec{f}^{\xi }_{\eta }}{\partial {\bar{\varvec{x}}}_{d}}\varGamma ^{\xi }(s_{\text {delay}}) \hbox {d}\eta \hbox {d}t \bigg |_{n} \le \int _{P_{1}}^{s}C_{3}|\varGamma ^{\xi }(s_{\text {delay}})|_{n}\hbox {d}t\le \int _{0}^{s}C_{3}|\varGamma ^{\xi }(t)|_{n}\hbox {d}t, \end{aligned}$$

and by the mean value theorem

$$\begin{aligned}&\displaystyle \bigg |\int _{P_{1}}^{s}\int _{0}^{1}\frac{ \partial \varvec{f}^{\xi }_{\eta }}{\partial {\bar{\varvec{x}}}_{z}}\big [\bar{\varvec{x}}(s_{\text {delay}}^{\xi }|\varvec{\delta },\varvec{\theta }^{\xi })-\bar{\varvec{x}}(s_{\text {delay}}|\varvec{\delta },\varvec{\theta }^{\xi })\big ] \hbox {d}\eta \hbox {d}t \bigg |_{n}\nonumber \\&\quad \le \displaystyle C_{3}\int _{P_{1}}^{s}\int _{0}^{1}\bigg |\frac{\partial {\bar{\varvec{x}}}(z(t,\varvec{\theta }+\iota \xi \varvec{e}^{r})|\varvec{\delta },\varvec{\theta }+\iota \xi \varvec{e}^{r})}{\partial z}\frac{\partial z}{\partial \theta _{r}}\xi \bigg |_{n}\hbox {d}\iota \hbox {d}t \le C_{3}^{3}q|\xi |, \end{aligned}$$
(48)

where \(\iota \in [0,1].\) Again, by applying Gronwall’s Lemma, we have

$$\begin{aligned} |\varGamma ^{\xi }(s)|_{n}\le & {} \left( C_{3}+C_{3}^{2}T\right) \exp {(C_{3}q)}|\xi |+C_{3}|\xi | +C_{3}^{3}q|\xi |+\int _{0}^{s}2C_{3}|\varGamma ^{\xi }(t)|_{n}\hbox {d}t\nonumber \\\le & {} \left( C_{3}+C_{3}^{2}T\right) \exp {(C_{3}q)}|\xi | +\left( C_{3}+C_{3}^{3}q\right) \exp {(2C_{3}q)}|\xi |. \end{aligned}$$
(49)

Since \(\xi \in [-a,a]\) is arbitrary, the function \(\varGamma ^{\xi }(s)\) is of order \(\xi \).

Step 3: The definition of \(\rho \) and its properties

For each \(\xi \in \mathbb {R}\), define the corresponding functions \(\lambda ^{1,\xi }{:}\,[0,q]\rightarrow \mathbb {R}^{n},\) \(\lambda ^{2,\xi }{:}\,[0,q]\rightarrow \mathbb {R}^{n}\) and \(\lambda ^{3,\xi }{:}\,[0,q]\rightarrow \mathbb {R}^{n}\) as follows:

$$\begin{aligned} \lambda ^{1,\xi }(t):= & {} \int _{0}^{1}\bigg \{\frac{\partial \varvec{f}\big (\bar{\varvec{x}}+\eta \varGamma ^{\xi }(t),{\bar{\varvec{x}}}_{d} +\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }} +\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}}\nonumber \\&\qquad \qquad -\,\frac{\partial \varvec{f}\big (\bar{\varvec{x}},{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}} \bigg \}\varGamma ^{\xi }(t)\hbox {d}\eta \end{aligned}$$
(50)
$$\begin{aligned} \lambda ^{2,\xi }(t):= & {} \int _{0}^{1}\bigg \{\frac{\partial \varvec{f}\big (\bar{\varvec{x}}+\eta \varGamma ^{\xi }(t),{\bar{\varvec{x}}}_{d} +\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r}, {\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{d}}\nonumber \\&\qquad \qquad -\,\frac{\partial \varvec{f}\big (\bar{\varvec{x}},{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{d}} \bigg \}({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d})\hbox {d}\eta \end{aligned}$$
(51)
$$\begin{aligned} \lambda ^{3,\xi }(t):= & {} \int _{0}^{1}\bigg \{\frac{\partial \varvec{f}\big (\bar{\varvec{x}}+\eta \varGamma ^{\xi }(t), {\bar{\varvec{x}}}_{d}+\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}), {\varvec{\theta }}+\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )}{\partial \theta _{r}}\nonumber \\&\qquad \qquad -\,\frac{\partial \varvec{f}\big (\bar{\varvec{x}},{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial \theta _{r}} \bigg \}\xi \hbox {d}\eta \end{aligned}$$
(52)

In addition, let the function \(\rho {:}\,[-a,0[\cup ]0,a]\rightarrow \mathbb {R}\) be defined as follows:

$$\begin{aligned} \rho (\xi ):=|\xi |^{-1}\int _{0}^{q}\{|\lambda ^{1,\xi }(t)|_{n} +|\lambda ^{2,\xi }(t)|_{n}+|\lambda ^{3,\xi }(t)|_{n}\}\hbox {d}t \end{aligned}$$
(53)

Since the function \(\varGamma ^{\xi }(s)\) is of order \(\xi \), it follows that

$$\begin{aligned}&{\bar{\varvec{x}}} +\eta \varGamma ^{\xi }(t)\rightarrow {\bar{\varvec{x}}} ,\quad \text {as}~ \xi \rightarrow 0, \end{aligned}$$
(54)
$$\begin{aligned}&{\bar{\varvec{x}}}_{d}+\eta \left( {\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}\right) \rightarrow {\bar{\varvec{x}}}_{d} ,\quad \text {as}~ \xi \rightarrow 0, \end{aligned}$$
(55)

uniformly with respective to \(t\in [0,q]\) and \(\eta \in [0,1]\). Meanwhile, it is obvious that

$$\begin{aligned} \varvec{\theta }+\eta \xi \varvec{e}^{r}\rightarrow \varvec{\theta }, \quad \text {as}~ \xi \rightarrow 0, \end{aligned}$$
(56)

uniformly with respect to \(\eta \in [0,1]\). Since the convergences in (54) and (55) take place inside the ball \(\mathcal {N}_{n}(C_{1})\), the convergence in (56) takes place inside of the ball \(\mathcal {N}_{n}(C_{2})\), \(\partial \varvec{f}/\partial {\bar{\varvec{x}}}\), \(\partial \varvec{f}/\partial {\bar{\varvec{x}}}_{z}\) and \(\partial \varvec{f}/\partial \theta _{r}\) are uniformly continuous on the compact set \([0,q]\times \mathcal {N}_{n}(C_{1})\times \mathcal {N}_{n}(C_{1})\times \mathcal {V}\times \mathcal {N}_{n}(C_{2})\),

$$\begin{aligned} \frac{\partial \varvec{f}\big (\bar{\varvec{x}}^{0}+\eta \varGamma ^{\xi }(s),{\bar{\varvec{x}}}_{d} +\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r}, {\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}}\rightarrow & {} \frac{\partial \varvec{f}\big (\bar{\varvec{x}}^{0},{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}},\quad \text {as}~\xi \rightarrow 0,\\ \frac{\partial \varvec{f}\big (\bar{\varvec{x}}^{0}+\eta \varGamma ^{\xi }(s),{\bar{\varvec{x}}}_{d}+\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{d}}\rightarrow & {} \frac{\partial \varvec{f}\big (\bar{\varvec{x}}^{0},{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{d}},\quad \text {as}~\xi \rightarrow 0,\\ \frac{\partial \varvec{f}\big (\bar{\varvec{x}}^{0}+\eta \varGamma ^{\xi }(s),{\bar{\varvec{x}}}_{d}+\eta ({\bar{\varvec{x}}}_{d}^{\xi }-{\bar{\varvec{x}}}_{d}),{\varvec{\theta }}+\eta \xi \varvec{e}^{r},{\varvec{\delta }}\big )}{\partial \theta _{r}}\rightarrow & {} \frac{\partial \varvec{f}\big (\bar{\varvec{x}}^{0},{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial \theta _{r}},\quad \text {as}~\xi \rightarrow 0,\\ \frac{\partial {\bar{\varvec{x}}}\left( s_{\text {delay}}^{\xi ,\iota }|\varvec{\delta },\varvec{\theta }+\iota \xi \varvec{e}^{r}\right) }{\partial s_{\text {delay}}}\rightarrow & {} \frac{\partial {\bar{\varvec{x}}}\left( s_{\text {delay}}|\varvec{\delta },\varvec{\theta }\right) }{\partial s_{\text {delay}}},\quad \text {as}~\xi \rightarrow 0,\\ \frac{\partial s_{\text {delay}}^{\xi ,\iota }}{\partial \theta _{r}}\rightarrow & {} \frac{\partial s_{\text {delay}}}{\partial \theta _{r}},\quad \text {as}~\xi \rightarrow 0, \end{aligned}$$

uniformly with respect to \(t\in [0,q]\), \(\eta \in [0,1]\) and \(\iota \in [0,1]\), where \(s_{\text {delay}}^{\xi ,\iota }\) is the corresponding delayed time of the control \(\varvec{\theta }+\iota \xi \varvec{e}^{r}\). These results together with (49) indicate that \(|\xi |^{-1}\lambda ^{1,\xi }\rightarrow \varvec{0}\), \(|\xi |^{-1}\lambda ^{2,\xi }\rightarrow \varvec{0}\) and \(|\xi |^{-1}\lambda ^{3,\xi }\rightarrow \varvec{0}\) uniformly on [0, q] as \(\xi \rightarrow 0\). Thus,

$$\begin{aligned} \lim _{\xi \rightarrow 0}\rho (\xi )=\varvec{0}. \end{aligned}$$
(57)

Step 4: The final step

Let \(\xi \in [-a,0[\cup ]0,a]\) be arbitrary but fixed. Then, it follows from (43) that

$$\begin{aligned} \varGamma ^{\xi }(s)= & {} \int _{0}^{s}\big [\lambda ^{1,\xi }(t)+\lambda ^{2,\xi }(t)+\lambda ^{3,\xi }(t)\big ]\hbox {d}t+\int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}}\varGamma ^{\xi }(t)\hbox {d}t\nonumber \\&+\int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{d}}\left[ \varGamma ^{\xi }(s_{\text {delay}}+\frac{\partial {\bar{\varvec{x}}}(s_{\text {delay}}^{\xi ,\iota }|(\varvec{\delta },\varvec{\theta }+\iota \xi \varvec{e}^{r}))}{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}^{\xi ,\iota }}{\partial \theta _{r}}\xi \right] \hbox {d}t\nonumber \\&+\int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial \theta _{r}}\xi \hbox {d}t \end{aligned}$$
(58)

Furthermore, integrating the auxiliary system gives

$$\begin{aligned} \varLambda ^{r}(s|\varvec{\delta ,\theta })= & {} \int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}}\varLambda ^{r}(t|\varvec{\delta ,\theta })\hbox {d}t\nonumber \\&+\int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{d}}\left[ \varLambda ^{r}(s_{\text {delay}}|\varvec{\delta ,\theta })+\frac{\partial {\bar{\varvec{x}}}(s_{\text {delay}}|(\varvec{\delta },\varvec{\theta }))}{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}}{\partial \theta _{r}}\right] \hbox {d}t\nonumber \\&+\int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial \theta _{r}}\hbox {d}t \end{aligned}$$
(59)

Multiplying (58) by \(\xi ^{-1}\), and subtracting it from (59) yields

$$\begin{aligned}&\xi ^{-1}\varGamma ^{\xi }(s)-\varLambda ^{r}(s|\varvec{\delta ,\theta })\nonumber \\&\quad =\xi ^{-1}\int _{0}^{s}\big [\lambda ^{1,\xi }(t)+\lambda ^{2,\xi }(t)+\lambda ^{3,\xi }(t)\big ]\hbox {d}t\nonumber \\&\qquad +\int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}}(\xi ^{-1}\varGamma ^{\xi }(t)-\varLambda ^{r}(s|\varvec{\delta ,\theta }))\hbox {d}t\nonumber \\&\qquad +\int _{0}^{s}\frac{\partial \varvec{f}\big (\bar{\varvec{x}} ,{\bar{\varvec{x}}}_{d},{\varvec{\theta }},{\varvec{\delta }}\big )}{\partial {\bar{\varvec{x}}}_{z}}\bigg [\left( \xi ^{-1}\varGamma ^{\xi }(s_{\text {delay}})-\varLambda ^{r}(s_{\text {delay}}|\varvec{\delta ,\theta })\right) \nonumber \\&\qquad +\,\frac{\partial {\bar{\varvec{x}}}\left( s_{\text {delay}}^{\xi ,\iota }|\left( \varvec{\delta },\varvec{\theta }+\iota \xi \varvec{e}^{r}\right) \right. }{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}^{\xi ,\iota }}{\partial \theta _{r}}-\frac{\partial {\bar{\varvec{x}}}\left( s_{\text {delay}}|(\varvec{\delta },\varvec{\theta })\right) }{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}}{\partial \theta _{r}}\bigg ]\hbox {d}t \end{aligned}$$
(60)

Let

$$\begin{aligned} \bar{\rho }(\xi )= & {} \rho (\xi )+\int _{0}^{s}C_{3}\bigg |\frac{\partial {\bar{\varvec{x}}}(s_{\text {delay}}^{\xi ,\iota }|(\varvec{\delta },\varvec{\theta }+\iota \xi \varvec{e}^{r})}{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}^{\xi ,\iota }}{\partial \theta _{r}}\\&-\, \frac{\partial {\bar{\varvec{x}}}(s_{\text {delay}}|(\varvec{\delta },\varvec{\theta }))}{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}}{\partial \theta _{r}}\bigg |_{n}\hbox {d}t. \end{aligned}$$

Then, it is easy to see that \(\rho ^{\prime }(\xi )\rightarrow 0,\) as \(\xi \rightarrow 0\). Therefore,

$$\begin{aligned}&|\xi ^{-1}\varGamma ^{\xi }(s)-\varLambda ^{r}(s|\varvec{\delta ,\theta })|_{n}\\&\quad \le \rho (\xi )+\int _{0}^{s}C_{3}|\xi ^{-1}\varGamma ^{\xi }(t)-\varLambda ^{r}(t|\varvec{\delta ,\theta })|_{n}\hbox {d}t\\&\qquad +\int _{0}^{s}C_{3}|\xi ^{-1}\varGamma ^{\xi }(s_{\text {delay}})-\varLambda ^{r}(s_{\text {delay}}|\varvec{\delta ,\theta })|_{n}\hbox {d}t\\&\qquad +\int _{0}^{s}C_{3}\bigg |\frac{\partial {\bar{\varvec{x}}}(s_{\text {delay}}^{\xi ,\iota }|(\varvec{\delta },\varvec{\theta }+\iota \xi \varvec{e}^{r})}{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}^{\xi ,\iota }}{\partial \theta _{r}}-\frac{\partial {\bar{\varvec{x}}}(s_{\text {delay}}|(\varvec{\delta },\varvec{\theta }))}{\partial s_{\text {delay}}}\frac{\partial s_{\text {delay}}}{\partial \theta _{r}}\bigg |_{n}\hbox {d}t\\&\quad \le \bar{\rho }(\xi )+\int _{0}^{s}2C_{3}|\xi ^{-1}\varGamma ^{\xi }(t) -\varLambda ^{r}(t|\varvec{\delta ,\theta })|_{n}\hbox {d}t \end{aligned}$$

By Gronwall’s Lemma

$$\begin{aligned} |\xi ^{-1}\varGamma ^{\xi }(s)-\varLambda ^{r}(s|\varvec{\delta ,\theta })|_{n} \le \bar{\rho }(\xi )\exp {(2C_{3}q)},\quad s\in [0,q]. \end{aligned}$$
(61)

Noting that \(\xi \in [-a,0[\cup ]0,a]\) is arbitrary, we can take the limit as \(\xi \rightarrow 0\) in (61) and then apply (57) to get

$$\begin{aligned} \lim _{\xi \rightarrow 0}\xi ^{-1}\varGamma ^{\xi }(s)=\varLambda ^{r}(s|\varvec{\delta },\varvec{\theta }), \quad s\in [0,q]. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Lin, Q., Loxton, R. et al. A Hybrid Time-Scaling Transformation for Time-Delay Optimal Control Problems. J Optim Theory Appl 169, 876–901 (2016). https://doi.org/10.1007/s10957-015-0783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0783-z

Keywords

Mathematics Subject Classification

Navigation