Skip to main content
Log in

Structural Displacement Requirement in a Topology Optimization Algorithm Based on Isogeometric Entities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work deals with the formulation of a general design requirement on the displacement of a continuum medium in the framework of a special density-based algorithm for topology optimization. The algorithm makes use of non-uniform rational basis spline hyper-surfaces to represent the pseudo-density field describing the part topology and of the well-known solid isotropic material with penalization approach. The proposed formulation efficiently exploits the properties of the isogeometric basis functions, which allow defining an implicit filter. In particular, the structural displacement requirement is formulated in the most general sense, by considering displacements on loaded and non-loaded regions. The gradient of the structural displacement is evaluated in closed form by using the principle of virtual work. Moreover, a sensitivity analysis of the optimized topology to the integer parameters, involved in the definition of the hyper-surface, is carried out. The effectiveness of the proposed approach is proven through meaningful 2D and 3D benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bendsoe, M., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  2. Suzuki, K., Kikuchi, N.: A homogenization method for shape and topology optimization. Comput. Methods Appl. Mech. Eng. 93(3), 291–318 (1991)

    Article  Google Scholar 

  3. Allaire, G., Bonnetier, E., Francfort, G., Jouve, F.: Shape optimization by the homogenization method. Numer. Math. 76, 27–68 (1997)

    Article  MathSciNet  Google Scholar 

  4. Da, D., Xia, L., Li, G., Huang, X.: Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct. Multidiscip. Optim. 57(6), 2143–2159 (2018)

    Article  MathSciNet  Google Scholar 

  5. de Ruiter, M., van Keulen, F.: Topology optimization using a topology description function. Struct. Multidiscip. Optim. 26(6), 406–416 (2004)

    Article  Google Scholar 

  6. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MathSciNet  Google Scholar 

  7. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1), 227–246 (2003)

    Article  MathSciNet  Google Scholar 

  8. van Dijk, N.P., Maute, K., Langelaar, M., van Keulen, F.: Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48(3), 437–472 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bendsoe, M., Sigmund, O.: Topology Optimization—Theory, Methods and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  10. Sigmund, O.: A 99 line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)

    Article  MathSciNet  Google Scholar 

  11. Altair Engineering Inc, HyperWorks 13.0, OptiStruct User’s Guide (2014)

  12. SIMULIA: TOSCASTRUCTURE Documentation 8.1 (2013)

  13. Guest, J.K., Prévost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61(2), 238–254 (2003)

    Article  MathSciNet  Google Scholar 

  14. Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43(6), 767–784 (2011)

    Article  Google Scholar 

  15. Qian, X.: Topology optimization in B-spline space. Comput. Methods Appl. Mech. Eng. 265, 15–35 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wang, M., Qian, X.: Efficient Filtering in Topology Optimization via B- Splines. ASME J. Mech. Des. 137(3), 225–251 (2015)

    Google Scholar 

  17. Costa, G., Montemurro, M., Pailhès, J.: A 2 D topology optimisation algorithm in NURBS framework with geometric constraints. Int. J. Mech. Mater. Des. 14(4), 669–696 (2018)

    Article  Google Scholar 

  18. Costa, G., Montemurro, M., Pailhès, J.: NURBS hypersurfaces for 3D topology optimisation problems. Mech. Adv. Mater. Struct. (2019). https://doi.org/10.1080/15376494.2019.1582826

    Article  MATH  Google Scholar 

  19. Costa, G., Montemurro, M., Pailhès, J.: Minimum Length Scale Control in a NURBS-based SIMP Method. Comput. Methods Appl. Mech. Eng. 354, 963–989 (2019)

    Article  MathSciNet  Google Scholar 

  20. Costa, G., Montemurro, M., Pailhès, J., Perry, N.: Maximum length scale requirement in a topology optimisation method based on NURBS hyper-surfaces. CIRP Ann. 68, 153–156 (2019)

    Article  Google Scholar 

  21. Seo, Y.D., Kim, H.J., Youn, S.K.: Shape optimization and its extension to topological design based on isogeometric analysis. Int. J. Solids Struct. 47(11–12), 1618–1640 (2010)

    Article  Google Scholar 

  22. Xie, X., Wang, S., Xu, M., Wang, Y.: A new isogeometric topology optimization using moving morphable components based on r-functions and collocation schemes. Comput. Methods Appl. Mech. Eng. 339, 61–90 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zhang, W., Li, D., Kang, P., Guo, X., Youn, S.K.: Explicit topology optimization using iga-based moving morphable void (mmv) approach. Comput. Methods Appl. Mech. Eng. (2019, in press)

  24. Rong, J., Yi, J.H.: A structural topological optimization method for multi-displacement constraints and any initial topology configuration. Acta Mech. Sin. 26, 735–744 (2010)

    Article  MathSciNet  Google Scholar 

  25. Yi, G.L., Sui, Y.K.: Different effects of economic and structural performance indexes on model construction of structural topology optimization. Acta. Mech. Sin. 31(5), 777–788 (2015)

    Article  MathSciNet  Google Scholar 

  26. Csébfalvi, A.: Volume minimization with displacement constraints in topology optimization of continuum structures. Int. J. Optim. Civ. Eng. 6, 447–453 (2016)

    Google Scholar 

  27. Kocvara, M.: Topology optimization with displacement constraints: a bilevel programming approach. Struct. Optim. 14, 256–263 (1997)

    Article  Google Scholar 

  28. Sigmund, O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 493–524 (1997)

    Article  Google Scholar 

  29. Sigmund, O.: Manufacturing tolerant topology optimization. Acta. Mech. Sin. 25(2), 227–239 (2009)

    Article  Google Scholar 

  30. Luo, Z., Tong, L.: A level set for shape and topology optimization of large-displacement compliant mechanisms. Int. J. Numer. Methods Eng. 76, 862–892 (2008)

    Article  MathSciNet  Google Scholar 

  31. Rong, J.H., Liu, X.H., Yi, J.J., Yi, J.H.: An efficient structural topological optimization method for continuum structures with multiple displacement constraints. Finite Elem. Anal. Des. 47(8), 913–921 (2011)

    Article  Google Scholar 

  32. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Book  Google Scholar 

  33. Liu, Y., Zhao, G., Zavalnyi, O., Cao, X., Cheng, K., Xiao, W.: STEP-compliant CAD/CNC system for feature-oriented machining. Comput. Aided Des. Appl. 16, 358–368 (2019)

    Article  Google Scholar 

  34. Lanczos, C.: The Variational Principles of Mechanics. Dover Books on Physics. Dover, New York (1986)

    Google Scholar 

  35. Bathe, K.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (2006)

    MATH  Google Scholar 

  36. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  37. Huang, X., Xie, Y.M.: Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multidiscip. Optim. 40, 409 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is grateful to region Nouvelle-Aquitaine for supporting this research work through the OCEAN-ALM project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Montemurro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The details of the proof of Proposition 3.1 are given here below.

Proof

Inasmuch as body forces are identically null, the derivative of the right-hand side of Eq. (27) is

$$\begin{aligned} \frac{\partial \lbrace {\mathrm {f}}^{(i)} \rbrace }{\partial \varXi ^{(l)}_{\tau }}= \lbrace 0 \rbrace , \ i=R,V, \ l=1,2, \end{aligned}$$
(34)

which implies the following equality

$$\begin{aligned} \frac{\partial \left( [{\mathrm {K}}] \lbrace {\mathrm {d}}^{(i)} \rbrace \right) }{\partial \varXi ^{(l)}_{\tau }}= \lbrace 0 \rbrace , \ \Rightarrow \frac{\partial \lbrace {\mathrm {d}}^{(i)} \rbrace }{\partial \varXi ^{(l)}_{\tau }}= -[{\mathrm {K}}]^{-1} \frac{\partial [{\mathrm {K}}]}{\partial \varXi ^{(l)}_{\tau }}\lbrace {\mathrm {d}}^{(i)} \rbrace , \ i=R,V, \ l=1,2.\nonumber \\ \end{aligned}$$
(35)

By deriving both sides of Eq. (28) one obtains:

$$\begin{aligned} \frac{\partial \Vert {\mathbf {u}}_P^{(R)} \Vert }{\partial \varXi ^{(l)}_{\tau }}= \frac{\partial \left( \lbrace {\mathrm {d}}^{(V)} \rbrace ^{\mathrm {T}} [{\mathrm {K}}] \right) }{\partial \varXi ^{(l)}_{\tau }} \lbrace {\mathrm {d}}^{(R)} \rbrace + \lbrace {\mathrm {d}}^{(V)} \rbrace ^{\mathrm {T}} [{\mathrm {K}}]\frac{\partial \lbrace {\mathrm {d}}^{(R)} \rbrace }{\partial \varXi ^{(l)}_{\tau }}. \end{aligned}$$
(36)

By injecting Eq. (35) into Eq. (36), the following expression can be retrieved:

$$\begin{aligned} \frac{\partial \Vert {\mathbf {u}}_P^{(R)} \Vert }{\partial \varXi ^{(l)}_{\tau }}= - \lbrace {\mathrm {d}}^{(V)} \rbrace ^{\mathrm {T}} \frac{\partial [{\mathrm {K}}]}{\partial \varXi ^{(l)}_{\tau }} \lbrace {\mathrm {d}}^{(R)} \rbrace . \end{aligned}$$
(37)

Consider now the expression of the structure stiffness matrix of Eq. (10). Due to the local support property of Eq. (8) its derivative reads:

$$\begin{aligned} \frac{\partial [{\mathrm {K}}]}{\partial \varXi ^{(l)}_{\tau }}=\sum _{e=1}^{N_e} \alpha \rho _e^{\alpha -1} \frac{\partial \rho _e}{\partial \varXi ^{(l)}_{\tau }} [{\mathrm {K}}_e]=\sum _{e \in S_{\tau }} \dfrac{\alpha }{\rho _e} \frac{\partial \rho _e}{\partial \varXi ^{(l)}_{\tau }} \rho _e^{\alpha }[{\mathrm {K}}_e]. \end{aligned}$$
(38)

By multiplying both sides of the above expression by \(\lbrace {\mathrm {d}}^{(V)} \rbrace ^{\mathrm {T}}\), one gets:

$$\begin{aligned} \lbrace {\mathrm {d}}^{(V)} \rbrace ^{\mathrm {T}} \frac{\partial [{\mathrm {K}}]}{\partial \varXi ^{(l)}_{\tau }}=\sum _{e \in S_{\tau }} \dfrac{\alpha }{\rho _e} \frac{\partial \rho _e}{\partial \varXi ^{(l)}_{\tau }} \lbrace \mathrm {f_e}^{(V)} \rbrace ^{\mathrm {T}}. \end{aligned}$$
(39)

Finally, Eq. (29) can be trivially obtained by injecting the above formula in Eq. (37). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, T., Montemurro, M., Le Texier, P. et al. Structural Displacement Requirement in a Topology Optimization Algorithm Based on Isogeometric Entities. J Optim Theory Appl 184, 250–276 (2020). https://doi.org/10.1007/s10957-019-01622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01622-8

Keywords

Mathematics Subject Classification

Navigation