Skip to main content
Log in

Automorphic L-Functions in the Weight Aspect

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let Sk(Γ) be the space of holomorphic Γ-cusp forms f(z) of even weight k ≥ 12 for Γ = SL(2, ), and let Sk(Γ)+ be the set of all Hecke eigenforms from this space with the first Fourier coefficient af(1) = 1. For f ∈ Sk(Γ)+, consider the Hecke L-function L(s, f). Let

$$S\left( {k \leqslant K} \right) = \bigcup\limits_{\mathop {12 \leqslant k \leqslant K}\limits_{k\quad \operatorname{even} } } {Sk\left( \Gamma \right)^ + .}$$

It is proved that for large K,

$$\sum\limits_{f \in S\left( {k \leqslant K} \right)} {L(\frac{1}{2},f)^4 \ll K^{2 + \varepsilon } } ,$$

where ε > 0 is arbitrary. For f ∈ Sk(Γ)+, let L(s, sym 2 f) denote the symmetric square L-function. It is proved that as k → ∞ the frequence

$$\frac{{\# \left\{ {f|f \in S_k (\Gamma )^ + ,L(1,\operatorname{sym} ^2 f) \leqslant x} \right\}}}{{\# \left\{ {f|f \in S_k (\Gamma )^ + } \right\}}}$$

converges to a distribution function G(x) at every point of continuity of the latter, and for the corresponding characteristic function an explicit expression is obtained. Bibliography: 17 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Sarnak, “Estimates for Rankin-Selberg L-functions and quantum unique ergodicity,” J. Funct. Analysis, 184, 419–453 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  2. N. V. Kuznetzov, “Convolution of the Fourier coefficients of Eisenstein-Maass series,” Zap. Nauchn. Semin. LOMI, 129, 43–84 (1983).

    Google Scholar 

  3. R. F. Faisiev, “Estimates in the mean in the additive divisor problem,” in: Abstracts of Papers Presented at the All-Union Conference “Number Theory and Its Applications” (Tbilisi, September 17–19, 1985), Tbilisi (1985), pp. 273–276.

  4. M. B. Barban, “The ‘large sieve’ method and its application in the number theory,” Uspekhi Mat. Nauk, 21, No. 1, 51–102 (1966).

    MATH  MathSciNet  Google Scholar 

  5. M. B. Barban, “The ‘large sieve’ of Yu. V. Linnik and a limit theorem for the class number of ideals of an imaginary quadratic field,” Izv. Akad. Nauk SSSR, Ser. Mat., 26, No. 4, 573–580 (1962).

    MATH  MathSciNet  Google Scholar 

  6. W. Luo, “Values of symmetric square L-functions at 1,” J. Reine Angew. Math., 506, 215–235 (1999).

    MATH  MathSciNet  Google Scholar 

  7. O. M. Fomenko, “Behavior of automorphic L-functions at the points s = 1 and s = 1/2,” Zap. Nauchn. Semin. POMI, 302, 149–167 (2003).

    Google Scholar 

  8. J. Hoffstein and P. Lockhart, “Coefficients of Maass forms and the Siegel zero (with an appendix by D. Goldfeld, J. Hoffstein, and D. Lieman, An effective zero free region),” Ann. Math., 140, 161–181 (1994).

    MathSciNet  Google Scholar 

  9. H. Iwaniec, Topics in Classical Automorphic Forms (Grad. Stud. Math., 17), Providence, Rhode Island (1997).

  10. M. Jutila, A Method in the Theory of Exponential Sums, Bombay (1987).

  11. H. Bateman and A. Erdelyi, Higner Transcendental Functions, Vol. 2 [Russian translation], Moscow (1974).

  12. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions [in Russian], Moscow (1979).

  13. H. L. Montgomery, Topics in Multiplicative Number Theory (Lect. Notes. Math., 227), Springer-Verlag (1971).

  14. S. Gelbart and H. Jacquet, “A relation between automorphic representations of GL(2) and SL(3),” Ann. Sci. Ec. Norm. Sup., 4, 471–552 (1978).

    MathSciNet  Google Scholar 

  15. O. M. Fomenko, “Fourier coefficients of cusp-forms and automorphic L-functions,” Zap. Nauchn. Semin. POMI, 237, 194–226 (1997).

    MATH  Google Scholar 

  16. N. Kurokawa, “On the meromorphy of Euler products,” Proc. Japan Acad., A54, No. 6, 163–166 (1978).

    MathSciNet  Google Scholar 

  17. W. Duke and E. Kowalski, “A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations, Invent. Math., 139, 1–39 (2000).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 314, 2004, pp. 221–246.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomenko, O.M. Automorphic L-Functions in the Weight Aspect. J Math Sci 133, 1733–1748 (2006). https://doi.org/10.1007/s10958-006-0085-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-006-0085-y

Keywords

Navigation