Skip to main content
Log in

Inversion of matrices over a pseudocomplemented lattice

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We compute the greatest solutions of systems of linear equations over a lattice (P, ≤). We also present some applications of the results obtained to lattice matrix theory. Let (P, ≤) be a pseudocomplemented lattice with \(\widetilde0\) and \(\widetilde1\) and let A = ‖a ij n×n , where a ij P for i, j = 1,..., n. Let A* = ‖a ij n×n and \( a_{ij} ' = \mathop \Lambda \limits_{r = 1r \ne j}^n a_{ri}^* \) for i, j = 1,..., n, where a* is the pseudocomplement of aP in (P, ≤). A matrix A has a right inverse over (P, ≤) if and only if A · A* = E over (P, ≤). If A has a right inverse over (P, ≤), then A* is the greatest right inverse of A over (P, ≤). The matrix A has a right inverse over (P, ≤) if and only if A is a column orthogonal over (P, ≤). The matrix D = A · A* is the greatest diagonal such that A is a left divisor of D over (P, ≤).

Invertible matrices over a distributive lattice (P, ≤) form the general linear group GL n (P, ≤) under multiplication. Let (P, ≤) be a finite distributive lattice and let k be the number of components of the covering graph Γ(join(P,≤) − \(\{ \widetilde0\} \), ≤), where join(P, ≤) is the set of join irreducible elements of (P, ≤). Then GL a (P, ≤) ≅ = S k n .

We give some further results concerning inversion of matrices over a pseudocomplemented lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aigner, Combinatorial Theory, Grundlehren Series 234, Springer, New York (1979).

    MATH  Google Scholar 

  2. G. Birkhoff, Lattice Theory, AMS, Providence (1967).

    MATH  Google Scholar 

  3. G. Gratzer, General Lattice Theory, Akademie, Berlin (1978).

    Google Scholar 

  4. M. I. Kargapolov and Yu. I. Merzlyakov, Foundations of Group Theory [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  5. Ki Hang Kim, Boolean Matrix Theory and Applications, Marcel Dekker, New York (1982).

    MATH  Google Scholar 

  6. R. D. Luce, “A note on Boolean matrix theory,” Proc. Amer. Math. Soc., 3, No. 2, 382–388 (1952).

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Reutenauer and H. Staubing, “Inversion of matrices over a commutative semiring,” J. Algebra, 88, No. 2, 350–360 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  8. D. E. Rutherford, “Inverses of Boolean matrices,” Proc. Glasgow Math. Assoc., 6, No. 1, 49–53 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  9. L. A. Skornyakov, Elements of Lattice Theory [in Russian], Nauka, Moscow (1970).

    MATH  Google Scholar 

  10. L. A. Skornyakov, “Inverses of matrices over a distributive lattice,” Sib. Mat. Zh., 27, No. 2, 182–185 (1986).

    MATH  MathSciNet  Google Scholar 

  11. L. A. Skornyakov and D. P. Egorova, “Normal subgroups of a general linear group over a distributive lattice,” Algebra Logika, 23, No. 6, 670–683 (1984).

    MathSciNet  Google Scholar 

  12. R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth & Brooks/Cole, Belmont (1986).

    MATH  Google Scholar 

  13. J. H. M. Wedderburn, “Boolean linear associative algebra,” Ann. Math., 35, No. 1, 185–194 (1934).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 3, pp. 139–154, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marenich, E.E., Kumarov, V.G. Inversion of matrices over a pseudocomplemented lattice. J Math Sci 144, 3968–3979 (2007). https://doi.org/10.1007/s10958-007-0250-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0250-y

Keywords

Navigation