Skip to main content
Log in

On linguistic dynamical systems, families of graphs of large girth, and cryptography

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of a linguistic dynamical system of dimension n ≥ 2 over an arbitrary commutative ring K, i.e., a family F of nonlinear polynomial maps f α : K nK n depending on “time” α ∈ {K − 0} such that f α −1 = f −αM, the relation f α1 (x) = f α2 (x) for some x ∈ Kn implies α1 = α2, and each map f α has no invariant points. The neighborhood {f α (υ)∣α ∈ K − {0}} of an element v determines the graph Γ(F) of the dynamical system on the vertex set Kn. We refer to F as a linguistic dynamical system of rank d ≥ 1 if for each string a = (α1, υ, α2), s ≤ d, where αi + αi+1 is a nonzero divisor for i = 1, υ, d − 1, the vertices υ a = f α1 × ⋯ × f αs (υ) in the graph are connected by a unique path. For each commutative ring K and each even integer n ≠= 0 mod 3, there is a family of linguistic dynamical systems Ln(K) of rank d ≥ 1/3n. Let L(n, K) be the graph of the dynamical system Ln(q). If K = Fq, the graphs L(n, Fq) form a new family of graphs of large girth. The projective limit L(K) of L(n, K), n → ∞, is well defined for each commutative ring K; in the case of an integral domain K, the graph L(K) is a forest. If K has zero divisors, then the girth of K drops to 4. We introduce some other families of graphs of large girth related to the dynamical systems Ln(q) in the case of even q. The dynamical systems and related graphs can be used for the development of symmetric or asymmetric cryptographic algorithms. These graphs allow us to establish the best known upper bounds on the minimal order of regular graphs without cycles of length 4n, with odd n ≥ 3. Bibliography: 42 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bien, “Constructions of telephone networks by group representations,” Notices Amer. Math. Soc., 36, 5–22 (1989).

    MathSciNet  Google Scholar 

  2. N. Biggs, Algebraic Graph Theory, 2nd edition, Cambridge Univ. Press, Cambridge (1993).

    Google Scholar 

  3. N. L. Biggs, “Graphs with large girth,” Ars Combin., 25C, 73–80 (1988).

    MathSciNet  Google Scholar 

  4. N. L. Biggs and A.G. Boshier, “Note on the girth of Ramanujan graphs,” J. Combin. Theory Ser. B, 49, 190–194 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  5. N. L. Biggs and M. J. Hoare, “The sextet construction for cubic graphs,” Combinatorica, 3, 153–165 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).

    MATH  Google Scholar 

  7. B. Bollobás, Random Graphs, Academic Press, London (1985).

    MATH  Google Scholar 

  8. J. A. Bondy and M. Simonovits, “Cycles of even length in graphs,” J. Combin. Theory Ser. B, 16, 97–105 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Brouwer, A. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer, Berlin (1989).

    MATH  Google Scholar 

  10. P. Erdös and H. Sachs, “Regulare Graphen gegebener Taillenweite mit minimaler Knotenzahl,” Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 12, 251–257 (1963).

    MATH  MathSciNet  Google Scholar 

  11. N. Koblitz, A Course in Number Theory and Cryptography, 2nd edition, Springer-Verlag, New York (1994).

    MATH  Google Scholar 

  12. N. Koblitz, “Algebraic aspects of cryptography,” in: Algorithms and Computations in Mathematics, Vol. 3, Springer-Verlag, Berlin (1998).

    Google Scholar 

  13. W. Imrich, “Explicit construction of graphs without small cycles,” Combinatorica, 2, 53–59 (1984).

    Article  MathSciNet  Google Scholar 

  14. F. Lazebnik and V. A. Ustimenko, “New examples of graphs without small cycles and of large size,” European J. Combin., 14, 445–460 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Lazebnik and V. Ustimenko, “Explicit construction of graphs with an arbitrary large girth and of large size,” Discrete Appl. Math., 60, 275–284 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  16. F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, “A new series of dense graphs of high girth,” Bull. Amer. Math. Soc. (N.S.), 32, No. 1, 73–79 (1995).

    MATH  MathSciNet  Google Scholar 

  17. F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, “New upper bounds on the order of cages,” Electron. J. Combin., 14, No. 2, R13, 1–11 (1997).

    MathSciNet  Google Scholar 

  18. F. Lazebnik, V. A. Ustimenko, and A. Woldar, “Polarities and 2k-cycle-free graphs,” Discrete Math., 197/198, 503–513 (1999).

    MathSciNet  Google Scholar 

  19. A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combinatorica, 8, No. 3, 261–277 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  20. W. Magnus, A. Karrass, and D. Solitar, Combinatorial Group Theory, Interscience Publ., New York-London-Sydney (1966).

    MATH  Google Scholar 

  21. G. A. Margulis, “Explicit construction of graphs without short cycles and low density codes,” Combinatorica, 2, 71–78 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Margulis, “Explicit group-theoretical constructions of combinatorial schemes and their application to the design of expanders and superconcentrators,” Problemy Peredachi Informatsii, 24, No. 1, 51–60 (1988).

    MathSciNet  Google Scholar 

  23. M. Margulis, “Arithmetic groups and graphs without short cycles,” in: 6th International. Symposium on Information Theory, Abstracts, Tashkent, pp. 123–125 (1984).

  24. H. L. Montgomery, Topics in Multiplicative Number Theory, Lect. Notes Math., 227, Springer-Verlag, New York (1971).

    MATH  Google Scholar 

  25. H. Sachs, “Regular graphs with given girth and restricted circuits,” J. London. Math. Soc., 38, 423–429 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  26. N. Sauer, “Extremaleigenschaften regulärer Graphen gegebener Taillenweite, I, II,” Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II, 176, 9–25, 27–43 (1967).

    MathSciNet  Google Scholar 

  27. J. Seberry and J. Pieprzyk, Cryptography: An Introducion to Computer Security, Prentice Hall (1989).

  28. M. Simonovits, “Extremal graph theory,” in: Selected Topics in Graph Theory, 2, L. W. Beineke and R. J. Wilson (eds.), Academic Press, London (1983), pp. 161–200.

    Google Scholar 

  29. J. Spencer, The Strange Logic of Random Graphs, Springer-Verlag, Berlin (2001).

    MATH  Google Scholar 

  30. W. Tutte, “A family of cubical graphs,” Proc. Cambridge Philos. Soc., 43, 459–474 (1947).

    Article  MATH  MathSciNet  Google Scholar 

  31. V. A. Ustimenko, “Linear interpretation of Chevalley group flag geometries,” Ukrainian Math. J., 42, No. 3, 341–344 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  32. V. A. Ustimenko, “Coordinatisation of regular tree and its quotients,” in: Voronoi’s Impact on Modern Science, P. Engel and H. Syta (eds.), Book 2, National Acad. of Sci, Institute of Mathematics (1998).

  33. V. A. Ustimenko, “On the varieties of parabolic subgroups, their generalizations and combinatorial applications,” Acta Appl. Math., 52, 223–238 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  34. V. Ustimenko, “Graphs with special arcs and cryptography,” Acta Appl. Math., 74, No. 2, 117–153 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  35. V. Ustimenko, “CRYPTIM: Graphs as tools for symmetric encryption,” Lect. Notes Comput. Sci., 2227, 278–286 (2001).

    Article  MathSciNet  Google Scholar 

  36. V. Ustimenko, “Maximality of affine group and hidden graph cryptosystems,” Algebra Discrete Math., No. 1, 133–150 (2005).

  37. V. A. Ustimenko and D. Sharma, “CRYPTIM: system to encrypt text and image data,” in: Proceedings of the International ICSC Congress on Intelligent Systems 2000, Wollongong (2001).

  38. V. Ustimenko and A. Touzene, “CRYPTALL: system to encrypt all types of data,” Notices Kiev-Mohyla Academy, 23, 12–15 (2004).

    Google Scholar 

  39. Yu. Khmelevsky and V. A. Ustimenko, “Practical aspects of the Informational Systems reengineering,” The South Pacific Journal of Natural Science, 21 (2003); www.usp.ac.fj (spjns).

  40. H. Walther, “Eigenschaften von regulären Graphen gegebener Taillenweite und minimaler Knotzenzahl,” Wiss. Z. Illmenau, 11, 167–168 (1965).

    MATH  MathSciNet  Google Scholar 

  41. H. Walther, “Uber regulare Graphen gegebener Taillenweite und minimaler Knotenpunktanzahl,” Wiss. Z. Techn. Hochsch. Ilmenau, 11, 93–96 (1965).

    MATH  MathSciNet  Google Scholar 

  42. A. L. Weiss, “Girth of bipartite sextet graphs,” Combinatorica, 4, 241–245 (1984).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 326, 2005, pp. 214–234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustimenko, V.A. On linguistic dynamical systems, families of graphs of large girth, and cryptography. J Math Sci 140, 461–471 (2007). https://doi.org/10.1007/s10958-007-0453-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-007-0453-2

Keywords

Navigation