Skip to main content
Log in

SDEs Driven by a Time-Changed Lévy Process and Their Associated Time-Fractional Order Pseudo-Differential Equations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

It is known that the transition probabilities of a solution to a classical Itô stochastic differential equation (SDE) satisfy in the weak sense the associated Kolmogorov equation. The Kolmogorov equation is a partial differential equation with coefficients determined by the corresponding SDE. Time-fractional Kolmogorov-type equations are used to model complex processes in many fields. However, the class of SDEs that is associated with these equations is unknown except in a few special cases. The present paper shows that in the cases of either time-fractional order or more general time-distributed order differential equations, the associated class of SDEs can be described within the framework of SDEs driven by semimartingales. These semimartingales are time-changed Lévy processes where the independent time-change is given respectively by the inverse of a single or mixture of independent stable subordinators. Examples are provided, including a fractional analogue of the Feynman–Kac formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Article  Google Scholar 

  3. Courrége, P.: Générateur infinitésimal d’un semi-groupe de convolution sur ℝn, et formule de Lévy–Khintchine. Bull. Sci. Math. 2e Sér. 88, 3–30 (1964)

    MATH  Google Scholar 

  4. Engel, K.-J., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Springer, Berlin (1999)

    Google Scholar 

  5. Gillis, J.E., Weiss, G.H.: Expected number of distinct sites visited by a random walk with an infinite variance. J. Math. Phys. 11, 1307–1312 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, G.E., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 223–276. Springer, Berlin (1997)

    Google Scholar 

  7. Gorenflo, R., Mainardi, F.: Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1(2), 167–191 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance. III. In: Mathematical Finance. Trends Math., pp. 171–180. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  9. Gorenflo, R., Mainardi, F., Vivoli, A.: Continuous time random walk and parametric subordination in fractional diffusion. Chaos Solitons Fractals 34(1), 87–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hörmander, L.: The Analysis of Linear Partial Differential Operators. II. Differential Operators with Constant Coefficients. Springer, Berlin (1983)

    MATH  Google Scholar 

  11. Jacob, N.: Pseudo Differential Operators and Markov Processes. Generators and Their Potential Theory, vol. II. Imperial College Press, London (2002)

    Book  MATH  Google Scholar 

  12. Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979)

    MATH  Google Scholar 

  13. Kobayashi, K.: Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations (2009). arXiv:0906.5385v1 [math.PR]

  14. Magdziarz, M., Weron, A.: Competition between subdiffusion and Lévy flights: a Monte Carlo approach. Phys. Rev. E 75, 056702 (2007)

    Article  Google Scholar 

  15. Magdziarz, M., Weron, A., Klafter, J.: Equivalence of the fractional Fokker–Planck and subordinated Langevin equations: the case of a time-dependent force. Phys. Rev. Lett. 101, 210601 (2008)

    Article  Google Scholar 

  16. Mainardi, F., Luchko, Y., Pagnini, G.: The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4(2), 153–192 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Meerschaert, M.M., Scheffler, H.-P.: Limit Distributions for Sums of Independent Random Vectors. Heavy Tails in Theory and Practice. Wiley, New York (2001)

    MATH  Google Scholar 

  18. Meerschaert, M.M., Scheffler, H.-P.: Triangular array limits for continuous time random walks. Stoch. Process. Appl. 118, 1606–1633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965)

    Article  MathSciNet  Google Scholar 

  21. Sato, K.-i.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Saxton, M.J., Jacobson, K.: Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997)

    Article  Google Scholar 

  23. Schertzer, D., Larchevêque, M., Duan, J., Yanovsky, V.V., Lovejoy, S.: Fractional Fokker–Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises. J. Math. Phys. 42(1), 200–212 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Situ, R.: Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering. Springer, Berlin (2005)

    MATH  Google Scholar 

  25. Taylor, M.: Pseudodifferential Operators. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  26. Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht (1999)

    Book  MATH  Google Scholar 

  27. Umarov, S., Gorenflo, R.: On multi-dimensional random walk models approximating symmetric space-fractional diffusion processes. Fract. Calc. Appl. Anal. 8(1), 73–88 (2005)

    MathSciNet  Google Scholar 

  28. Umarov, S., Gorenflo, R.: Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations. I. Z. Anal. Ihre Anwend. 24(3), 449–466 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Umarov, S., Steinberg, S.: Random walk models associated with distributed fractional order differential equations. IMS Lect. Notes Monogr. Ser. High Dimens. Probab. 51, 117–127 (2006)

    MathSciNet  Google Scholar 

  30. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1941)

    Google Scholar 

  31. Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371(6), 461–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, M., Kobayashi, K. & Umarov, S. SDEs Driven by a Time-Changed Lévy Process and Their Associated Time-Fractional Order Pseudo-Differential Equations. J Theor Probab 25, 262–279 (2012). https://doi.org/10.1007/s10959-010-0289-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-010-0289-4

Keywords

Mathematics Subject Classification (2000)

Navigation