Skip to main content
Log in

The Hausdorff Dimension of Operator Semistable Lévy Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let X={X(t)} t≥0 be an operator semistable Lévy process in ℝd with exponent E, where E is an invertible linear operator on ℝd and X is semi-selfsimilar with respect to E. By refining arguments given in Meerschaert and Xiao (Stoch. Process. Appl. 115, 55–75, 2005) for the special case of an operator stable (selfsimilar) Lévy process, for an arbitrary Borel set B⊆ℝ+ we determine the Hausdorff dimension of the partial range X(B) in terms of the real parts of the eigenvalues of E and the Hausdorff dimension of B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashbaugh, M., Rajput, B.S., Rama-Murthy, K., Sundberg, C.: Remarks on the positivity of densities of stable laws. Probab. Math. Stat. 13, 77–86 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Becker-Kern, P., Meerschaert, M.M., Scheffler, H.-P.: Hausdorff dimension of operator stable sample paths. Monatshefte Math. 140, 91–101 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Blumenthal, R.M., Getoor, R.K.: A dimension theorem for sample functions of stable processes. Ill. J. Math. 4, 370–375 (1960)

    MATH  MathSciNet  Google Scholar 

  4. Chorny, V.: Operator semistable distributions on ℝd. Theory Probab. Appl. 31, 703–709 (1987)

    Article  MATH  Google Scholar 

  5. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  6. Falconer, K.J.: Fractal Geometry—Mathematical Foundations and Applications, 2nd edn. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  7. Hazod, W., Siebert, E.: Stable Probability Measures on Euclidean Spaces and on Locally Compact Groups. Kluwer Academic, Dordrecht (2001)

    Book  MATH  Google Scholar 

  8. Hendricks, W.J.: A dimension theorem for sample functions of processes with stable components. Ann. Probab. 1, 849–853 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Holmes, J., Hudson, W., Mason, J.D.: Operator stable laws: Multiple exponents and elliptical symmetry. Ann. Probab. 10, 602–612 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kahane, J.-P.: Some Random Series of Functions, 2nd edn. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  11. Khoshnevisan, D., Xiao, Y.: Lévy processes: Capacity and Hausdorff dimension. Ann. Probab. 33, 841–878 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khoshnevisan, D., Xiao, Y., Zhong, Y.: Measuring the range of an additive Lévy process. Ann. Probab. 31, 1097–1141 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Łuczak, A.: Operator semi-stable probability measures on ℝN. Collect. Math. 45, 287–300 (1981)

    MATH  Google Scholar 

  14. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  15. Meerschaert, M.M., Scheffler, H.-P.: Limit Distributions for Sums of Independent Random Vectors. Wiley, New York (2001)

    MATH  Google Scholar 

  16. Meerschaert, M.M., Veeh, J.A.: The structure of the exponents and symmetries of an operator stable measure. J. Theor. Probab. 6, 713–726 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meerschaert, M.M., Xiao, Y.: Dimension results for sample paths of operator stable Lévy processes. Stoch. Process. Appl. 115, 55–75 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Port, S.C.: A remark on hitting places for transient stable processes. Ann. Math. Stat. 39, 365–371 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  19. Port, S.C., Vitale, R.A. Positivity of stable densities. Proc. Am. Math. Soc. 102, 1018–1023 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pruitt, W.E.: The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19, 371–378 (1969)

    MATH  MathSciNet  Google Scholar 

  21. Pruitt, W.E., Taylor, S.J.: Sample path properties of processes with stable components. Z. Wahrscheinlichkeitstheor. Verw. Geb. 12, 267–289 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Sato, K., Watanabe, T.: Last exit times for transient semistable processes. Ann. Inst. Henri Poincaré Probab. Stat. 41, 929–951 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sharpe, M.: Zeroes of infinitely divisible densities. Ann. Math. Stat. 40, 1503–1505 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  25. Taylor, S.J.: Sample path properties of a transient stable process. J. Math. Mech. 16, 1229–1246 (1967)

    MATH  MathSciNet  Google Scholar 

  26. Xiao, Y.: Random fractals and Markov processes. In: Lapidus, M.L., et al. (eds.) Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, pp. 261–338. AMS, Providence (2004)

    Chapter  Google Scholar 

  27. Xiao, Y., Lin, H.: Dimension properties of sample paths of self-similar processes. Acta Math. Sin. 10, 289–300 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kern.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, P., Wedrich, L. The Hausdorff Dimension of Operator Semistable Lévy Processes. J Theor Probab 27, 383–403 (2014). https://doi.org/10.1007/s10959-012-0422-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-012-0422-7

Keywords

Mathematics Subject Classification

Navigation