Skip to main content
Log in

Asymptotic Behavior of Semistable Lévy Exponents and Applications to Fractal Path Properties

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper proves sharp bounds on the tails of the Lévy exponent of an operator semistable law on \({\mathbb R^d}\). These bounds are then applied to explicitly compute the Hausdorff and packing dimensions of the range, graph, and other random sets describing the sample paths of the corresponding operator semi-selfsimilar Lévy processes. The proofs are elementary, using only the properties of the Lévy exponent, and certain index formulae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker-Kern, P., Meerschaert, M.M., Scheffler, H.-P.: Hausdorff dimension of operator stable sample paths. Monatshefte Math. 140, 91–101 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blumenthal, R.M., Getoor, R.K.: A dimension theorem for sample functions of stable processes. Illinois J. Math. 4, 370–375 (1960)

    MathSciNet  MATH  Google Scholar 

  3. Blumenthal, R.M., Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493–516 (1961)

    MathSciNet  MATH  Google Scholar 

  4. Blumenthal, R.M., Getoor, R.K.: The dimension of the set of zeros and the graph of a symmetric stable processes. Illinois J. Math. 6, 308–316 (1962)

    MathSciNet  MATH  Google Scholar 

  5. Choi, G.S.: Criteria for recurrence and transience of semistable processes. Nagoya Math. J. 134, 91–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Choi, G.S., Sato, K.: Recurrence and transience of operator semi-stable processes. Proc. Japan Acad Ser. A 71, 87–89 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chorny, V.: Operator semistable distributions on \(\mathbb{R}^{d}\). Theory Probab. Appl. 31, 703–709 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Falconer, K.J.: Fractal Geometry—Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  9. Hendricks, W.J.: A dimension theorem for sample functions of processes with stable components. Ann. Probab. 1, 849–853 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoffman, K., Kunze, R.: Linear Algebra. Prentice Hall, New Jersey (1961)

    MATH  Google Scholar 

  11. Jajte, R.: Semi-stable probability measures on \(\mathbb{R}^{N}\). Studia Math. 61, 29–39 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kern, P., Wedrich, L.: The Hausdorff dimension of operator semistable Lévy processes. J. Theoret. Probab. 27, 383–403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khoshnevisan, D., Xiao, Y.: Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33, 841–878 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khoshnevisan, D., Xiao, Y.: Packing dimension of the range of a Lévy process. Proc. Amer. Math. Soc. 136, 2597–2607 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khoshnevisan, D., Xiao, Y.: Harmonic analysis of additive Lévy processes. Probab. Thorey Relat. Fields 145, 459–515 (2009)

    Article  MATH  Google Scholar 

  16. Khoshnevisan, D., Shieh, N.-R., Xiao, Y.: Hausdorff dimension of the contours of symmetric additive Lévy processes. Probab. Theory Relat. Fields 140, 169–193 (2008)

    Article  MATH  Google Scholar 

  17. Khoshnevisan, D., Xiao, Y., Zhong, Y.: Measuring the range of an additive Lévy process. Ann. Probab. 31, 1097–1141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kolodyński, S., Rosiński, J.: Group self-similar stable processes in \(\mathbb{R}^{d}\). J. Theor. Probab. 16, 855–876 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laha, R.G., Rohatgi, V.K.: Operator semistable probability measures on a Hilbert space. Bull. Austral. Math. Soc. 22, 397–406 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Łuczak, A.: Operator semi-stable probability measures on \(\mathbb{R}^{N}\). Coll. Math. 45, 287–300 (1981)

    Article  MATH  Google Scholar 

  21. Luks, T., Xiao, Y.: On the double points of operator stable Lévy processes. J. Theoret. Probab. (to appear). Manuscript available at arXiv:1503.01022 (2015)

  22. Maejima, M., Sato, K.: Semi-selfsimilar processes. J. Theoret. Probab. 12, 347–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Manstavičius, M.: Hausdorff-Besicovitch dimension of graphs and \(p\)-variation of some Lévy processes. Bernoulli 13, 40–53 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meerschaert, M.M., Magin, R.L., Ye, A.Q.: Anisotropic fractional diffusion tensor imaging. J. Vib. Control 22(9), 2211–2221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meerschaert, M.M., Scheffler, H.-P.: Limit Distributions for Sums of Independent Random Vectors. Wiley, New York (2001)

    MATH  Google Scholar 

  26. Meerschaert, M.M., Scheffler, H.-P.: Portfolio modeling with heavy tailed random vectors. In: Rachev, S.T. (ed.) Handbook of Heavy-Tailed Distributions in Finance, pp. 595–640. Elsevier, New York (2003)

    Chapter  Google Scholar 

  27. Meerschaert, M.M., Xiao, Y.: Dimension results for sample paths of operator stable Lévy processes. Stoch. Process. Appl. 115, 55–75 (2005)

    Article  MATH  Google Scholar 

  28. Pruitt, W.E.: The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19, 371–378 (1969)

    MathSciNet  MATH  Google Scholar 

  29. Pruitt, W.E., Taylor, S.J.: Sample path properties of processes with stable components. Z. Wahrsch. Verw. Geb. 12, 267–289 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  31. Sornette, D.: Discrete-scale invariance and complex dimensions. Phys. Rep. 297, 239–270 (1998)

    Article  MathSciNet  Google Scholar 

  32. Taylor, S.J.: Sample path properties of a transient stable process. J. Math. Mech. 16, 1229–1246 (1967)

    MathSciNet  MATH  Google Scholar 

  33. Wedrich, L.: Hausdorff dimension of the graph of an operator semistable Lévy process. J. Fractal Geom. (to appear). Manuscript available at arXiv:1506.00615 (2015)

  34. Xiao, Y.: Random fractals and Markov processes. In: Lapidus, M.L., et al. (eds.) Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, pp. 261–338. AMS, Providence (2004)

    Chapter  Google Scholar 

  35. Zhang, Y., Benson, D.A., Meerschaert, M.M., LaBolle, E.M., Scheffler, H.-P.: Random walk approximation of fractional-order multiscaling anomalous diffusion. Phys. Rev. E 74, 026706 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kern.

Additional information

The work of Peter Kern was supported by Deutsche Forschungsgemeinschaft (DFG) under Grant KE1741/6-1. Mark M. Meerschaert was partially supported by ARO Grant W911NF-15-1-0562 and NSF Grants DMS-1462156 and EAR-1344280. Yimin Xiao was partially supported by NSF Grants DMS-1307470, DMS-1309856 and DMS-1612885.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kern, P., Meerschaert, M.M. & Xiao, Y. Asymptotic Behavior of Semistable Lévy Exponents and Applications to Fractal Path Properties. J Theor Probab 31, 598–617 (2018). https://doi.org/10.1007/s10959-016-0720-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-016-0720-6

Keywords

Mathematics Subject Classification (2010)

Navigation