Skip to main content
Log in

Nested Critical Points for a Directed Polymer on a Disordered Diamond Lattice

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider a model for a directed polymer in a random environment defined on a hierarchical diamond lattice in which i.i.d. random variables are attached to the lattice bonds. Our focus is on scaling schemes in which a size parameter n, counting the number of hierarchical layers of the system, becomes large as the inverse temperature \(\beta \) vanishes. When \(\beta \) has the form \({\widehat{\beta }}/\sqrt{n}\) for a parameter \({\widehat{\beta }}>0\), we show that there is a cutoff value \(0< \kappa < \infty \) such that as \(n \rightarrow \infty \) the variance of the normalized partition function tends to zero for \({\widehat{\beta }}\le \kappa \) and grows without bound for \({\widehat{\beta }}> \kappa \). We obtain a more refined description of the border between these two regimes by setting the inverse temperature to \(\kappa /\sqrt{n} + \alpha _n\) where \(0 < \alpha _n \ll 1/\sqrt{n}\) and analyzing the asymptotic behavior of the variance. We show that when \(\alpha _n = \alpha (\log n-\log \log n)/n^{3/2}\) (with a small modification to deal with non-zero third moment), there is a similar cutoff value \(\eta \) for the parameter \(\alpha \) such that the variance goes to zero when \(\alpha < \eta \) and grows without bound when \(\alpha > \eta \). Extending the analysis yet again by probing around the inverse temperature \((\kappa / \sqrt{n}) + \eta (\log n-\log \log n)/n^{3/2}\), we find an infinite sequence of nested critical points for the variance behavior of the normalized partition function. In the subcritical cases \({\widehat{\beta }}\le \kappa \) and \(\alpha \le \eta \), this analysis is extended to a central limit theorem result for the fluctuations of the normalized partition function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alberts, T., Clark, J., Kocić, S.: The intermediate disorder regime for a directed polymer model on a hierarchical lattice. Stoch. Proc. Appl. (2017). doi:10.1016/j.spa.2017.02.011

  2. Alberts, T., Khanin, K., Quastel, J.: The intermediate disorder regime for directed polymers in dimension \(1+1\). Ann. Probab. 42(3), 1212–1256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alberts, T., Ortgiese, M.: The near-critical scaling window for directed polymers on disordered trees. Electron. J. Probab. 18(19), 1–24 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Commun. Math. Phys. 123, 529–534 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carmona, P., Hu, Y.: Strong disorder implies strong localization for directed polymers in a random environment. ALEA 2, 217–229 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Caravenna, F., Sun, R., Zygouras, N.: The continuum disordered pinning model. Prob. Theory Relat. Fields 164, 17–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Comets, F., Shiga, T., Yoshida, N.: Probabilistic analysis of directed polymers in a random environment: a review. Adv. Stud. Pure Math. 39, 115–142 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cook, J., Derrida, B.: Polymers on disordered hierarchical lattices: a nonlinear combination of random variables. J. Stat. Phys. 57, 89–139 (1989)

    Article  MathSciNet  Google Scholar 

  9. Derrida, B., Gardner, E.: Renormalisation group study of a disordered model. J. Phys. A Math. Gen. 17, 3223–3236 (1984)

    Article  MathSciNet  Google Scholar 

  10. Derrida, B., Giacomin, G., Lacoin, H., Toninelli, F.L.: Fractional moment bounds and disorder relevance for pinning models. Commun. Math. Phys. 287, 867–887 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Derrida, B., Griffith, R.B.: Directed polymers on disordered hierarchical lattices. Europhys. Lett. 8(2), 111–116 (1989)

    Article  Google Scholar 

  12. Derrida, B., Hakim, V., Vannimenius, J.: Effect of disorder on two-dimensional wetting. J. Stat. Phys. 66, 1189–1213 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dey, P.S., Zygouras, N.: High temperature limits for \((1+1)\)-dimensional directed polymer with heavy-tailed disorder. Ann. Probab. 44(6), 4006–4048 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flores, G.R.M., Seppäläinen, T., Valkó, B.: Fluctuation exponents for directed polymers in the intermediate disorder regime. Electron. J. Probab. 19(89), 1–28 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Garel, T., Monthus, C.: Critical points of quadratic renormalizations of random variables and phase transitions of disordered polymer models on diamond lattices. Phys. Rev. E 77, 021132 (2008)

    Article  MathSciNet  Google Scholar 

  16. Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps, and quenched disorder. Probab. Theory. Relat. Fields 147, 185–216 (2010). https://link.springer.com/article/10.1007/s00440-009-0205-y

  17. Griffith, R.B., Kaufman, M.: Spin systems on hierarchical lattices. Introduction and thermodynamical limit. Phys. Rev. B 26(9), 5022–5032 (1982)

    Article  MathSciNet  Google Scholar 

  18. Hambly, B.M., Jordan, J.H.: A random hierarchical lattice: the series-parallel graph and its properties. Adv. Appl. Probab. 36, 824–838 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hambly, B.M., Kumagai, T.: Diffusion on the scaling limit of the critical percolation cluster in the diamond hierarchical lattice. Adv. Appl. Probab. 36, 824–838 (2004)

    Article  MATH  Google Scholar 

  20. Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52, 609–622 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lacoin, H., Moreno, G.: Directed Polymers on hierarchical lattices with site disorder. Stoch. Proc. Appl. 120(4), 467–493 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lacoin, H.: Hierarchical pinning model with site disorder: disorder is marginally relevant. Probab. Theory Relat. Fields 148(1–2), 159–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lacoin, H.: New bounds for the free energy of directed polymers in dimension \(1+1\) and \(1+2\). Commun. Math. Phys. 294(2), 471–503 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann. Probab. 40(1), 19–73 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schlösser, T., Spohn, H.: Sample to sample fluctuations in the conductivity of a disordered medium. J. Stat. Phys. 69, 955–967 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vargas, V.: Strong localization and macroscopic atoms for directed polymer. Probab. Theory Relat. Fields 134, 391–410 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Wehr, J., Woo, J.M.: Central limit theorems for nonlinear hierarchical sequences or random variables. J. Stat. Phys. 104, 777–797 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for several suggestions which led to a greatly improved article. Alberts gratefully acknowledges the support of Simons Foundation Collaboration Grant #351687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Alberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberts, T., Clark, J. Nested Critical Points for a Directed Polymer on a Disordered Diamond Lattice. J Theor Probab 32, 64–89 (2019). https://doi.org/10.1007/s10959-017-0787-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0787-8

Keywords

Mathematics Subject Classification (2010)

Navigation