Skip to main content
Log in

Empirical Spectral Distribution of a Matrix Under Perturbation

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We provide a perturbative expansion for the empirical spectral distribution of a Hermitian matrix with large size perturbed by a random matrix with small operator norm whose entries in the eigenvector basis of the first matrix are independent with a variance profile. We prove that, depending on the order of magnitude of the perturbation, several regimes can appear, called perturbative and semi-perturbative regimes. Depending on the regime, the leading terms of the expansion are related either to the one-dimensional Gaussian free field or to free probability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. If the perturbing matrix belongs to the GOE or GUE, then its law is invariant under this change in basis, hence our results in fact apply to any self-adjoint matrix \(D_n\).

References

  1. Allez, R., Bouchaud, J.-P.: Eigenvector dynamics: general theory and some applications. Phys. Rev. E 86, 046202 (2012)

    Article  Google Scholar 

  2. Allez, R., Bouchaud, J.-P.: Eigenvector dynamics under free addition random matrices. Rand. Matrices: Theory Appl. 3(3), 1450010 (2014)

  3. Allez, R., Bun, J., Bouchaud, J.-P.: The eigenvectors of Gaussian matrices with an external source (2014). arXiv:1412.7108

  4. Bun, J., Allez, R., Bouchaud, J.-P., Potters, M.: Rotational invariant estimator for general noisy matrices. IEEE Trans. Inf. Theory 62(12), 7475–7490 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anderson, G., Zeitouni, O.: A CLT for a band matrix model. Probab. Theory Relat. Fields 134, 283–338 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benaych-Georges, F., Guionnet, A., Male, C.: Central limit theorems for linear statistics of heavy tailed random matrices. Commun. Math. Phys. 329(2), 641–686 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benaych-Georges, F., Knowles, A.: Lectures on the local semicircle law for Wigner matrices, arXiv. To appear in SMF series Panoramas et Synthèses

  8. Biane, P.: On the free convolution by a semi-circular distribution. Indiana Univ. Math. J. 46, 705–718 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biane, P.: Free Brownian motion, free stochastic calculus and random matrices. In: Free Probability Theory (Waterloo, ON, 1995), volume 12 of Fields Inst. Commun., pp. 1–19. American Mathematical Society, Providence (1997)

  10. Biane, P., Speicher, R.: Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Relat. Fields 112(3), 373–409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Biane, P., Speicher, R.: Free diffusions, free entropy and free Fisher information. Ann. Inst. H. Poincaré Probab. Statist. 37(5), 581–606 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Casati, G., Girko, V.: Generalized Wigner law for band random matrices. Random Oper. Stoch. Equ. 1, 279–286 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Casati, G., Girko, V.: Wigner’s semicircle law for band random matrices. Random Oper. Stoch. Equ. 1, 15–21 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Dubédat, J.: SLE and the free field: partition functions and couplings. J. Am. Math. Soc. 22(4), 995–1054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fernandez, F.M.: Introduction to Perturbation Theory in Quantum Mechanics. CRC Press, Boca Raton (2000)

    Book  Google Scholar 

  16. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, 2nd edn. Springer, Berlin (1990). (Springer Study Edition)

    MATH  Google Scholar 

  17. Kato, T.: Perturbation Theory for Linear Operators, 2nd corr. print. of the 2nd ed. Grundlehren der Mathematischen Wissenschaften, 132. Springer, Berlin (1984)

  18. King, F.W.: Hilbert Transforms. Encyclopedia of Mathematics and its Applications, 125, vol. 2. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  19. Ledoit, O., Péché, S.: Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Relat. Fields 151(1–2), 233–264 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shcherbina, M., Tirozzi, B.: Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs. J. Math. Phys. 51(2), 023523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shcherbina, M., Tirozzi, B.: Central limit theorem for fluctuations of linear eigenvalue statistics of large random graphs. Diluted regime. J. Math. Phys. 53(4), 043501 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shlyakhtenko, D.: Random Gaussian band matrices and freeness with amalgamation. Int. Math. Res. Not. 1996(20), 1013–1025 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wilkinson, M., Walker, P.: A Brownian motion model for the parameter dependence of matrix elements. J. Phys. A Math. Gen. 28, 6143 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Jean-Philippe Bouchaud, Guy David and Vincent Vargas for some fruitful discussions. We are also glad to thank the GDR MEGA for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathanaël Enriquez.

Appendix

Appendix

The reader can find here the results we use along the paper, namely the Helffer–Sjöstrand formula, the CLT extension lemma of Shcherbina and Tirozzi and a functional density lemma with its proof.

1.1 Helffer–Sjöstrand Formula

The proof of the following formula can be found, e.g., in [7].

Proposition 9

(Helffer–Sjöstrand formula) Let \(n \in \mathbb {N}\) and \(\phi \in {\mathcal {C}}^{p+1}(\mathbb {R})\). We define the almost analytic extension of \(\phi \) of degree p through

Let \(\chi \in {\mathcal {C}}^\infty _c(\mathbb {C};[0,1])\) be a smooth cutoff function. Then for any \(\lambda \in \mathbb {R}\) satisfying \(\chi (\lambda ) = 1\) we have

$$\begin{aligned} \phi (\lambda ) = \frac{1}{\pi } \int _\mathbb {C}\frac{\bar{\partial }(\widetilde{\phi }_p(z) \chi (z))}{\lambda - z} \, \mathrm {d}^2 z\,, \end{aligned}$$

where \(\mathrm {d}^2 z\) denotes the Lebesgue measure on \(\mathbb {C}\) and is the antiholomorphic derivative.

1.2 CLT Extension Lemma

The following CLT extension lemma is borrowed from the paper of Shcherbina and Tirozzi [20]. We state here the version that can be found in Appendix of [6].

Lemma 10

Let \((\mathcal {L}, \Vert \,\cdot \,\Vert )\) be a normed space with a dense subspace \(\mathcal {L}_1\) and, for each \(n\ge 1\), \((N_n(\phi ))_{\phi \in \mathcal {L}}\) a collection of real random variables such that:

  • for each n , \(\phi \longmapsto N_n(\phi )\) is linear,

  • for each n and each \(\phi \in \mathcal {L}\), \( \mathbb {E}[N_n(\phi )]=0 \),

  • there is a constant C such that for each n and each \(\phi \in \mathcal {L}\), \({\text {Var}}(N_n(\phi ))\le C\Vert \phi \Vert ^2\),

  • there is a quadratic form \(V:\mathcal {L}_1\rightarrow \mathbb {R}_+\) such that for any \(\phi \in \mathcal {L}_1\), we have the convergence in distribution \(N_n(\phi )\underset{n\rightarrow \infty }{\longrightarrow }\mathcal {N}(0, V(\phi ))\).

Then, V is continuous on \(\mathcal {L}_1\), can (uniquely) be continuously extended to \(\mathcal {L}\) and for any \(\phi \in \mathcal {L}\), we have the convergence in distribution \(N_n(\phi )\underset{n\rightarrow \infty }{\longrightarrow }\mathcal {N}(0, V(\phi ))\).

One of the assumptions of previous lemma concerns a variance domination. The next proposition provides a tool in order to check it. Let us first remind the definition of the Sobolev space \(\mathcal {H}_s\). For \(\phi \in L^1(\mathbb {R},\mathrm {d}x)\), we define

$$\begin{aligned} \widehat{\phi }(k):= \int \mathrm {e}^{ \mathrm {i}kx}\phi (x)\mathrm {d}x\qquad \qquad { (k\in \mathbb {R})} \end{aligned}$$

and, for \(s>0\),

$$\begin{aligned} \Vert \phi \Vert _{\mathcal {H}_s}:=\Vert k\longmapsto (1+2|k|)^s\,\widehat{\phi }(k)\Vert _{L^2}. \end{aligned}$$

We define the Sobolev space \(\mathcal {H}_s\) as the set of functions with finite \(\Vert \cdot \Vert _{\mathcal {H}_s}\) norm. Let us now state Proposition 2 of the paper [21] of Shcherbina and Tirozzi.

Proposition 11

For any \(s>0\), there is a constant \(C=C(s)\) such that for any n, any \(n\times n\) Hermitian random matrix M, and any \(\phi \in \mathcal {H}_s\), we have

$$\begin{aligned} {\text {Var}}({\text {Tr}}\phi (M))\le C \Vert \phi \Vert _{\mathcal {H}_s}^2\int _{y=0}^{\infty }y^{2s-1}\mathrm {e}^{-y}\int _{x\in \mathbb {R}}{\text {Var}}({\text {Tr}}((x+\mathrm {i}y-M)^{-1}))\mathrm {d}x\mathrm {d}y. \end{aligned}$$

1.3 A Density Lemma

We did not find Lemma 13 in the literature, so we provide its proof. Recall that for any \(z\in \mathbb {C}\backslash \mathbb {R}\),

$$\begin{aligned} \varphi _z(x)=\frac{1}{z-x}. \end{aligned}$$

Lemma 12

For any \(z\in \mathbb {C}\backslash \mathbb {R}\), we have, in the \(L^2\) sense,

$$\begin{aligned} \widehat{\varphi _z}=(t\longmapsto -{\text {sgn}}(\mathfrak {Im}z)2\pi \mathrm {i}\mathbb {1}_{\mathfrak {Im}(z)t>0}\mathrm {e}^{\mathrm {i}tz}) \end{aligned}$$
(33)

and \(\varphi _z\) belongs to each \(\mathcal {H}_s\) for any \(s\in \mathbb {R}\).

Proof

It is well known that if \(\mathfrak {Re}z>0\), then \(\displaystyle \frac{1}{z}= \int _{t=0}^{+\infty } \mathrm {e}^{-tz}\mathrm {d}t.\)

Let \(z=E+\mathrm {i}\eta \), \(E\in \mathbb {R}, \eta >0\). For any \(\xi \in \mathbb {R}\), we have

$$\begin{aligned} \varphi _z(\xi )=\frac{-\mathrm {i}}{\mathrm {i}(\xi -z)}= -\mathrm {i}\int _{t=0}^{+\infty } \mathrm {e}^{-\mathrm {i}t(\xi -z)}\mathrm {d}t= -\mathrm {i}\int _{t=0}^{+\infty } \mathrm {e}^{-\mathrm {i}t\xi } \mathrm {e}^{\mathrm {i}tz}\mathrm {d}t . \end{aligned}$$

We deduce (33) for \(\mathfrak {Im}z>0\). The general result can be deduced by complex conjugation. \(\square \)

Lemma 13

Let \(\mathcal {L}_1\) denote the linear span of the functions \(\varphi _z(x):=\frac{1}{z-x}\), for \(z\in \mathbb {C}\backslash \mathbb {R}\). Then the space \(\mathcal {L}_1\) is dense in \(\mathcal {H}_s\) for any \(s\in \mathbb {R}\).

Proof

We know, by Lemma 12, that \(\mathcal {L}_1\subset \mathcal {H}_s\). Recall first the definition of the Poisson kernel, for \(E\in \mathbb {R}\) and \(\eta >0\),

$$\begin{aligned} P_\eta (E)=\frac{1}{\pi }\frac{\eta }{E^2+\eta ^2}=\frac{1}{2\mathrm {i}\pi }\left( \varphi _{\mathrm {i}\eta }(E)-\varphi _{-\mathrm {i}\eta }(E)\right) \end{aligned}$$

and that, by Lemma 12,

$$\begin{aligned} \widehat{P_\eta }(t)=\mathrm {e}^{-\eta |t|}. \end{aligned}$$

Hence for any \(f\in \mathcal {H}_s\), we have

$$\begin{aligned} \Vert f-P_\eta *f\Vert _{\mathcal {H}_s}^2=\int (1+2|x|)^{2s}|\widehat{f}(x)|^2(1-\mathrm {e}^{-\eta |x|})^2\mathrm {d}x, \end{aligned}$$

so that, by dominated convergence, \(P_\eta *f\longrightarrow f\) in \(\mathcal {H}_s\) as \(\eta \rightarrow 0\).

To prove Lemma 13, it suffices to prove that any smooth compactly supported function can be approximated, in \(\mathcal {H}_s\), by functions of \(\mathcal {L}_1\). So let f be a smooth compactly supported function. By what precedes, it suffices to prove that for any fixed \(\eta >0\), \(P_\eta *f\) can be approximated, in \(\mathcal {H}_s\), by functions of \(\mathcal {L}_1\). For \(x\in \mathbb {R}\),

$$\begin{aligned} P_\eta *f(x)= & {} \frac{1}{\pi }\int f(t)\frac{\eta }{\eta ^2+(x-t)^2}\mathrm {d}t \\= & {} -\frac{1}{\pi }\int f(t)\mathfrak {Im}(\varphi _{t+\mathrm {i}\eta }(x))\mathrm {d}t \\= & {} \frac{1}{2\pi \mathrm {i}}\int f(t)(\varphi _{t-\mathrm {i}\eta }(x)-\varphi _{t+\mathrm {i}\eta }(x))\mathrm {d}t. \end{aligned}$$

Without loss of generality, one can suppose that the support of f is contained in [0, 1]. Then, for any \(n\ge 1\),

$$\begin{aligned} P_\eta *f(x)= & {} \frac{1}{2n\pi \mathrm {i}}\sum _{k=1}^n f \left( \frac{k}{n}\right) \left( \varphi _{\frac{k}{n}-\mathrm {i}\eta }(x)-\varphi _{\frac{k}{n}+\mathrm {i}\eta }(x)\right) +R_n(x) \end{aligned}$$
(34)

where for \([t]_n:=\lceil nt\rceil /n\),

$$\begin{aligned} R_n(x)= \frac{1}{2\pi \mathrm {i}}\int f(t)\left( \varphi _{t-\mathrm {i}\eta }(x)-\varphi _{t+\mathrm {i}\eta }(x)\right) -f([t]_n)\left( \varphi _{[t]_n-\mathrm {i}\eta }(x)-\varphi _{[t]_n+\mathrm {i}\eta }(x)\right) \mathrm {d}t. \end{aligned}$$

The error term \(R_n(x)\) rewrites

$$\begin{aligned} R_n(x)= & {} \frac{1}{2\pi \mathrm {i}}\int (f(t)-f([t]_n))(\varphi _{t-\mathrm {i}\eta }-\varphi _{t+\mathrm {i}\eta })(x)\mathrm {d}t\\&+\frac{1}{2\pi \mathrm {i}}\int f([t]_n)(\varphi _{t-\mathrm {i}\eta }-\varphi _{[t]_n-\mathrm {i}\eta }+\varphi _{t+\mathrm {i}\eta }-\varphi _{[t]_n+\mathrm {i}\eta })(x)\mathrm {d}t. \end{aligned}$$

Now, note that for any \(t\in \mathbb {R}\) and \(\eta \in \mathbb {R}\backslash \{0\}\), we have by Lemma 12,

$$\begin{aligned} \widehat{\varphi _{t+i\eta }}=(x\mapsto - {\text {sgn}}(\eta )2\pi \mathrm {i}\, \mathbb {1}_{\eta x>0} \, \mathrm {e}^{\mathrm {i}xz}), \end{aligned}$$

so that when, for example, \(\eta >0\), for any \(t\in \mathbb {R}\),

$$\begin{aligned} \Vert \varphi _{t+\mathrm {i}\eta }\Vert _{\mathcal {H}_s}^2=4\pi ^2\int _0^\infty (1+2|x|)^{2s}\mathrm {e}^{-2\eta x}\mathrm {d}x \end{aligned}$$

does not depend on t and for any \(t,t'\in \mathbb {R}\),

$$\begin{aligned} \Vert \varphi _{t+\mathrm {i}\eta }-\varphi _{t'+\mathrm {i}\eta }\Vert _{\mathcal {H}_s}^2= & {} 4\pi ^2\int _0^\infty (1+2|x|)^{2s}|\mathrm {e}^{\mathrm {i}tx}-\mathrm {e}^{\mathrm {i}t' x}|^2\mathrm {e}^{-2\eta x}\mathrm {d}x\\= & {} 4\pi ^2\int _0^\infty (1+2|x|)^{2s}|\mathrm {e}^{\mathrm {i}(t-t')x}-1|^2\mathrm {e}^{-2\eta x}\mathrm {d}x \end{aligned}$$

depends only on \(t'-t\) end tends to zero (by dominated convergence) when \(t'-t\rightarrow 0\).

We deduce that \(\Vert R_n\Vert _{\mathcal {H}_s}\longrightarrow 0\) as \(n\rightarrow \infty \), which closes the proof, by (34). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benaych-Georges, F., Enriquez, N. & Michaïl, A. Empirical Spectral Distribution of a Matrix Under Perturbation. J Theor Probab 32, 1220–1251 (2019). https://doi.org/10.1007/s10959-017-0790-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0790-0

Keywords

Mathematics Subject Classification (2010)

Navigation