Skip to main content

Advertisement

Log in

Empirical Distributions of Eigenvalues of Product Ensembles

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Assume a finite set of complex random variables form a determinantal point process; we obtain a theorem on the limit of the empirical distribution of these random variables. The result is applied to two types of n-by-n random matrices as n goes to infinity. The first one is the product of m i.i.d. (complex) Ginibre ensembles, and the second one is the product of truncations of m independent Haar unitary matrices with sizes \(n_j\times n_j\) for \(1\le j \le m\). Assuming m depends on n, by using the special structures of the eigenvalues we developed, explicit limits of spectral distributions are obtained regardless of the speed of m compared to n. For the product of m Ginibre ensembles, as m is fixed, the limiting distribution is known by various authors, e.g., Götze and Tikhomirov (On the asymptotic spectrum of products of independent random matrices, 2010. http://arxiv.org/pdf/1012.2710v3.pdf), Bordenave (Electron Commun Probab 16:104–113, 2011), O’Rourke and Soshnikov (Electron J Probab 16(81):2219–2245, 2011) and O’Rourke et al. (J Stat Phys 160(1):89–119, 2015). Our results hold for any \(m\ge 1\) which may depend on n. For the product of truncations of Haar-invariant unitary matrices, we show a rich feature of the limiting distribution as \(n_j/n\)’s vary. In addition, some general results on arbitrary rotation-invariant determinantal point processes are also derived. In particular, we obtain an inequality for the fourth moment of linear statistics of complex random variables forming a determinantal point process. This inequality is known for the complex Ginibre ensemble only (Hwang in Random matrices and their applications (Brunswick, Maine, 1984), Contemporary Mathematics, American Mathematics Society, Providence, vol 50, pp 145–152, 1986). Our method is the determinantal point process rather than the contour integral by Hwang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Dover Publications, New York (1965)

    MATH  Google Scholar 

  2. Akemann, G., Burda, Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A Math. Theor. 45(46), 465201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akemann, G., Burda, Z., Kieburg, M., Nagao, T.: Universal microscopic correlation functions for products of truncated unitary matrices. J. Phys. A Math. Theor. 47, 255202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, Z.D.: Circular law. Ann. Probab. 25, 494–529 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balakrishnan, N., Cohen, A.C.: Order Statistics and Inference: Estimation Methods. Academic Press, Cambridge (1991)

    MATH  Google Scholar 

  6. Bordenave, C.: On the spectrum of sum and product of non-Hermitian random matrices. Electron. Commun. Probab. 16, 104–113 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burda, Z.: Free products of large random matrices—a short review of recent developments. J. Phys. Conf. Ser. 473, 012002. http://arxiv.org/pdf/1309.2568v2.pdf (2013)

  9. Burda, Z., Janik, R.A., Waclaw, B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81, 041132 (2010)

    Article  MathSciNet  Google Scholar 

  10. Chafaï, D., Péché, S.: A note on the second order universality at the edge of Coulomb gases on the plane. J. Stat. Phys. 156(2), 368–383 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diaconis, P., Evans, S.: Linear functionals of eigenvalues of random matrices. Trans. Am. Math. Soc. 353, 2615–2633 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diaconis, P., Shahshahani, M.: On the eigenvalues of random matrices. J. Appl. Probab. 31A, 49–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, Z., Jiang, T., Li, D.: Circular law and arc law for truncation of random unitary matrix. J. Math. Phys. 53, 013301–14 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Götze, F., and Tikhomirov, T.: On the asymptotic spectrum of products of independent random matrices. http://arxiv.org/pdf/1012.2710v3.pdf (2010)

  15. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence, RI (2009)

  16. Hwang, C.R.: A brief survey on the spectral radius and the spectral distribution of large random matrices with i.i.d. entries. In: Random Matrices and Their Applications (Brunswick, Maine, 1984). Contemporary Mathematics, vol. 50, pp. 145–152. Amer. Math. Soc., Providence (1986)

  17. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31(2), 457–469 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  18. Girko, V.L.: The circular law. Teor. Veroyatnost. i Primenen 29, 669–679 (1984)

    MathSciNet  MATH  Google Scholar 

  19. Jiang, T.: The entries of Haar-invariant matrices from the classical compact groups. J. Theor. Probab. 23(4), 1227–1243 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, T.: Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles. Probab. Theory Relat. Fields 144(1), 221–246 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, T.: How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab. 34(4), 1497–1529 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, T., Qi, Y.: Spectral radii of large non-Hermitian random matrices. J. Theor. Probab. 30(1), 326–364 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Johansson, K.: Random matrices and determinantal processes. http://arxiv.org/pdf/math-ph/0510038v1.pdf (2005)

  24. Mukherjea, A.: Topics in Products of Random Matrices (Tata Institute of Fundamental Research). Narosa Pub House, Bombay (2000)

    Google Scholar 

  25. O’Rourke, S., Soshnikov, A.: Products of independent non-Hermitian random matrices. Electron. J. Probab. 16(81), 2219–2245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. O’Rourke, S., Renfrew, D., Soshnikov, A., Vu, V.: Products of independent elliptic random matrices. J. Stat. Phys. 160(1), 89–119 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Petz, D., Réffy, J.: Large deviation for the empirical eigenvalue density of truncated Haar unitary matrices. Probab. Theory Relat. Fields 133(2), 175–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55(5), 923–975 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tao, T., and Vu, V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38,2023-2065. With an appendix by Manjunath Krishnapur (2010)

  30. Życzkowski, K., Sommers, H.: Truncation of random unitary matrices. J. Phys. A Math. Gen. 33, 2045–2057 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for his/her very careful reading. The referee’s report helped us make the presentation much clearer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiefeng Jiang.

Additional information

T. Jiang: The research of Tiefeng Jiang was supported in part by NSF Grant DMS-1209166 and DMS-1406279.

Y. Qi: The research of Yongcheng Qi was supported in part by NSF Grant DMS-1005345.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Qi, Y. Empirical Distributions of Eigenvalues of Product Ensembles. J Theor Probab 32, 353–394 (2019). https://doi.org/10.1007/s10959-017-0799-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-017-0799-4

Keywords

Mathematics Subject Classification (2010)

Navigation