Skip to main content
Log in

A Smooth Transition from Wishart to GOE

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

It is well known that an \(n \times n\) Wishart matrix with d degrees of freedom is close to the appropriately centered and scaled Gaussian orthogonal ensemble (GOE) if d is large enough. Recent work of Bubeck, Ding, Eldan, and Racz, and independently Jiang and Li, shows that the transition happens when \(d = \Theta ( n^{3} )\). Here we consider this critical window and explicitly compute the total variation distance between the Wishart and GOE matrices when \(d / n^{3} \rightarrow c \in (0, \infty )\). This shows, in particular, that the phase transition from Wishart to GOE is smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. In statistics the number of samples is usually denoted by n and the number of parameters is usually denoted by p, resulting in a \(p \times p\) Wishart matrix with n degrees of freedom. Here our notation is taken with the geometric perspective in mind, following [3,4,5].

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  2. Anderson, G.W., Zeitouni, O.: A CLT for a band matrix model. Probab. Theory Relat. Fields 134(2), 283–338 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bubeck, S., Ding, J., Eldan, R., Rácz, M.Z.: Testing for high-dimensional geometry in random graphs. Random Struct. Algorithms 49(3), 503–532 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bubeck, S., Ganguly S.: Entropic CLT and phase transition in high-dimensional Wishart matrices (2015). Preprint. http://arxiv.org/abs/1509.03258

  5. Devroye, L., György, A., Lugosi, G., Udina, F.: High-dimensional random geometric graphs and their clique number. Electron. J. Probab. 16, 2481–2508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. El Karoui, N.: On the largest eigenvalue of Wishart matrices with identity covariance when \(n\), \(p\) and \(p/n \rightarrow \infty \) (2003). arXiv:math/0309355

  7. El Karoui, N.: Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. Ann. Probab. 35, 663–714 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eldan, R., Mikulincer, D.: Information and dimensionality of anisotropic random geometric graphs (2016). Preprint. https://arxiv.org/abs/1609.02490

  9. Jiang, T., Li, D.: Approximation of rectangular beta-Laguerre ensembles and large deviations. J. Theor. Probab. 28, 804–847 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Johnstone, I.M.: On the distribution of the largest eigenvalue in principal components analysis. Ann. Stat. 29(2), 295–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wishart, J.: The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A(1/2), 32–52 (1928)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank an anonymous reviewer for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miklós Z. Rácz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rácz, M.Z., Richey, J. A Smooth Transition from Wishart to GOE. J Theor Probab 32, 898–906 (2019). https://doi.org/10.1007/s10959-018-0808-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0808-2

Keywords

Mathematics Subject Classification (2010)

Navigation