Skip to main content
Log in

Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Consider a random process s that is a solution of the stochastic differential equation \(\mathrm {L}s = w\) with \(\mathrm {L}\) a homogeneous operator and w a multidimensional Lévy white noise. In this paper, we study the asymptotic effect of zooming in or zooming out of the process s. More precisely, we give sufficient conditions on \(\mathrm {L}\) and w such that \(a^H s(\cdot / a)\) converges in law to a non-trivial self-similar process for some H, when \(a \rightarrow 0\) (coarse-scale behavior) or \(a \rightarrow \infty \) (fine-scale behavior). The parameter H depends on the homogeneity order of the operator \(\mathrm {L}\) and the Blumenthal–Getoor and Pruitt indices associated with the Lévy white noise w. Finally, we apply our general results to several famous classes of random processes and random fields and illustrate our results on simulations of Lévy processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ayache, A., Roueff, F., Xiao, Y.: Local and asymptotic properties of linear fractional stable sheets. Comptes Rend. Math. 344(6), 389–394 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Bentkus, V., Surgailis, D.: Classes of self-similar random fields. Lith. Math. J. 21(2), 117–126 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Biermé, H., Durieu, O., Wang, Y.: Generalized random fields and l\(\backslash \)’evy’s continuity theorem on the space of tempered distributions. arXiv preprint. arXiv:1706.09326 (2017)

  4. Biermé, H., Durieu, O., Wang, Y.: Invariance principles for operator-scaling gaussian random fields. Ann. Appl. Probab. 27(2), 1190–1234 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Biermé, H., Estrade, A., Kaj, I.: Self-similar random fields and rescaled random balls models. J. Theor. Probab. 23(4), 1110–1141 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Biermé, H., Meerschaert, M.M., Scheffler, H.-P.: Operator scaling stable random fields. Stoch. Process. Appl. 117(3), 312–332 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Blu, T., Unser, M.: Self-similarity: part II–optimal estimation of fractal processes. IEEE Trans. Signal Process. 55(4), 1364–1378 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Blumenthal, R.M., Getoor, R.K.: Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10, 493–516 (1961)

    MathSciNet  MATH  Google Scholar 

  9. Böttcher, B., Schilling, R., Wang, J.: Lévy Matters III: Lévy-type Processes: Construction, Approximation and Sample Path Properties, vol. 2099. Springer, Berlin (2014)

    MATH  Google Scholar 

  10. Boulicaut, P.: Convergence cylindrique et convergence étroite d’une suite de probabilités de Radon. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 28, 43–52 (1973)

    MathSciNet  MATH  Google Scholar 

  11. Breton, J.C., Dombry, C.: Rescaled weighted random ball models and stable self-similar random fields. Stoch. Process. Appl. 119(10), 3633–3652 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Dalang, R.C., Humeau, T.: Lévy processes and Lévy white noise as tempered distributions. Ann. Probab. (to appear), arXiv preprint arXiv:1509.05274 (2015)

  13. Dalang, R.C., Walsh, J.B.: The sharp Markov property of Lévy sheets. Ann. Probab. 20, 591–626 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Deng, C.S., Schilling, R.L.: On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes. Stoch. Process. Appl. 125, 3851–3878 (2015)

    MATH  Google Scholar 

  15. Dobrushin, R.L.: Gaussian and their subordinated self-similar random generalized fields. Ann. Probab. 7, 1–28 (1979)

    MathSciNet  MATH  Google Scholar 

  16. Dombry, C., Guillotin-Plantard, N.: Discrete approximation of a stable self-similar stationary increments process. Bernoulli 15(1), 195–222 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Embrechts, P., Maejima, M.: An introduction to the theory of self-similar stochastic processes. Int. J. Mod. Phys. B 14, 1399–1420 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Fageot, J., Amini, A., Unser, M.: On the continuity of characteristic functionals and sparse stochastic modeling. J. Fourier Anal. Appl. 20, 1179–1211 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Fageot, J., Bostan, E., Unser, M.: Wavelet statistics of sparse and self-similar images. SIAM J. Imaging Sci. 8(4), 2951–2975 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Fageot, J., Fallah, A., Unser, M.: Multidimensional lévy white noise in weighted besov spaces. Stoch. Process. Appl. 127(5), 1599–1621 (2017)

    MATH  Google Scholar 

  21. Fageot, J., Humeau, T.: Unified view on Lévy white noises: general integrability conditions and applications to linear spde. arXiv preprint. arXiv:1708.02500 (2017)

  22. Fageot, J., Unser, M., Ward, J.P.: On the Besov regularity of periodic Lévy noises. Appl. Comput. Harmonic Anal. 42(1), 21–36 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Farkas, W., Jacob, N., Schilling, R.L.: Function spaces related to continuous negative definite functions: psi-Bessel potential spaces. Polska Akademia Nauk, Instytut Matematyczny (2001)

  24. Feller, W.: An introduction to probability theory and its applications, vol. 2. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  25. Fernique, X.: Processus linéaires, processus généralisés. Annales de l’Institut Fourier 17, 1–92 (1967)

    MATH  MathSciNet  Google Scholar 

  26. Gelfand, I.M.: Generalized random processes. Dokl. Akad. Nauk SSSR 100, 853–856 (1955)

    MathSciNet  Google Scholar 

  27. Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions. Applications of Harmonic Analysis, vol. 4. Academic Press, New York (1964)

    Google Scholar 

  28. Houdré, C., Kawai, R.: On layered stable processes. Bernoulli 13(1), 252–278 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Huang, Z., Li, C.: On fractional stable processes and sheets: white noise approach. J. Math. Anal. Appl. 325(1), 624–635 (2007)

    MathSciNet  MATH  Google Scholar 

  30. Itô, K.: Stationary random distributions. Kyoto J. Math. 28(3), 209–223 (1954)

    MathSciNet  MATH  Google Scholar 

  31. Itô, K.: Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces, vol. 47. SIAM, Philadelphia (1984)

    MATH  Google Scholar 

  32. Kaj, I., Leskelä, L., Norros, I., Schmidt, V.: Scaling limits for random fields with long-range dependence. Ann. Probab. 35, 528–550 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Koltz, S., Kozubowski, T.J., Podgorski, K.: The Laplace Distribution and Generalizations. Birkhauser, Boston (2001)

    Google Scholar 

  34. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)

    Google Scholar 

  35. Lodhia, A., Sheffield, S., Sun, X., Watson, S.S.: Fractional gaussian fields: a survey. Probab. Surv. 13, 1–56 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman and Co., San Francisco (1982)

    MATH  Google Scholar 

  37. Mandelbrot, B.B.: Fractals and Scaling in Finance. Selected Works of Benoit B. Mandelbrot, pp. x+551. Springer–Verlag, New York (1997)

  38. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    MathSciNet  MATH  Google Scholar 

  39. Meise, R., Vogt, D.: Introduction to functional analysis. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  40. Mikosch, T., Resnick, S., Rootzén, H., Stegeman, A.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Minlos, R.A.: Generalized random processes and their extension in measure. Trudy Mosk. Matematicheskogo Obshchestva 8, 497–518 (1959)

    MathSciNet  Google Scholar 

  42. Perrin, E., Harba, R., Berzin-Joseph, C., Iribarren, I., Bonami, A.: Nth-order fractional Brownian motion and fractional Gaussian noises. IEEE Trans. Signal Process. 49(5), 1049–1059 (2001)

    Google Scholar 

  43. Pesquet-PopescuU, B., Lévy Véhel, J.: Stochastic fractal models for image processing. Signal Process. Mag. IEEE 19(5), 48–62 (2002)

    Google Scholar 

  44. Pruitt, W.E.: The growth of random walks and Lévy processes. Ann. Probab. 9(6), 948–956 (1981)

    MathSciNet  MATH  Google Scholar 

  45. Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82(3), 451–487 (1989)

    MathSciNet  MATH  Google Scholar 

  46. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  47. Sato, K.: Lévy Processes and Infinitely Divisible Distributions, vol. 68. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  48. Schilling, R.L.: Growth and Hölder conditions for the sample paths of Feller processes. Probab. Theory Relat. Fields 112(4), 565–611 (1998)

    MATH  Google Scholar 

  49. Schilling, R.L.: Function spaces as path spaces of Feller processes. Math. Nachr. 217(1), 147–174 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Sinai, Y.G.: Self-similar probability distributions. Theory Probab. Appl. 21(1), 64–80 (1976)

    MathSciNet  MATH  Google Scholar 

  51. Sun, Q., Unser, M.: Left-inverses of fractional Laplacian and sparse stochastic processes. Adv. Comput. Math. 36(3), 399–441 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Tafti, P.D., Unser, M.: Fractional Brownian vector fields. Multiscale Model. Simul. 8(5), 1645–1670 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Unser, M., Tafti, P.D.: Stochastic models for sparse and piecewise-smooth signals. IEEE Trans. Signal Process. 59(3), 989–1006 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Unser, M., Tafti, P.D.: An Introduction to Sparse Stochastic Processes. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  55. Vakhania, N., Tarieladze, V., Chobanyan, S.: Probability Distributions on Banach Spaces, Mathematics and Its Applications (Soviet Series), vol. 14. D. Reidel Publishing Co., Dordrecht (1987)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Thomas Humeau for fruitful discussions that led to this work, in particular concerning Proposition 3.5. We also warmly thank Virginie Uhlmann for her help with the simulations. The research leading to these results was funded by the ERC grant agreement No 692726 - FUN-SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Fageot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fageot, J., Unser, M. Scaling Limits of Solutions of Linear Stochastic Differential Equations Driven by Lévy White Noises. J Theor Probab 32, 1166–1189 (2019). https://doi.org/10.1007/s10959-018-0809-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0809-1

Keywords

Mathematics Subject Classification (2010)

Navigation