Skip to main content
Log in

Derivatives of Feynman–Kac Semigroups

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove Bismut-type formulae for the first and second derivatives of a Feynman–Kac semigroup on a complete Riemannian manifold. We derive local estimates and give bounds on the logarithmic derivatives of the integral kernel. Stationary solutions are also considered. The arguments are based on local martingales, although the assumptions are purely geometric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnaudon, M., Plank, H., Thalmaier, A.: A Bismut type formula for the Hessian of heat semigroups. C. R. Math. Acad. Sci. Paris 336(8), 661–666 (2003). https://doi.org/10.1016/S1631-073X(03)00123-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985). https://doi.org/10.1007/BFb0075847

  3. Chow, B., Hamilton, R.S.: Constrained and linear Harnack inequalities for parabolic equations. Invent. Math. 129(2), 213–238 (1997). https://doi.org/10.1007/s002220050162

    Article  MathSciNet  MATH  Google Scholar 

  4. Elworthy, K.D., Li, X.M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125(1), 252–286 (1994). https://doi.org/10.1006/jfan.1994.1124

    Article  MathSciNet  MATH  Google Scholar 

  5. Elworthy, K.D., Li, X.M.: Bismut type formulae for differential forms. C. R. Acad. Sci. Paris Sér. I Math. 327(1), 87–92 (1998). https://doi.org/10.1016/S0764-4442(98)80108-0

    Article  MathSciNet  MATH  Google Scholar 

  6. Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262(11), 4639–4674 (2012). https://doi.org/10.1016/j.jfa.2011.11.030

    Article  MathSciNet  MATH  Google Scholar 

  7. Hsu, E.P.: Estimates of derivatives of the heat kernel on a compact Riemannian manifold. Proc. Am. Math. Soc. 127(12), 3739–3744 (1999). https://doi.org/10.1090/S0002-9939-99-04967-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X.D.: Hamilton’s Harnack inequality and the \(W\)-entropy formula on complete Riemannian manifolds. Stoch. Process. Appl. 126(4), 1264–1283 (2016). https://doi.org/10.1016/j.spa.2015.11.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, X.M.: Hessian Formulas and Estimates for Parabolic Schrödinger Operators (2016). arXiv: 1610.09538

  10. Li, X.M., Thompson., J.: First Order Feynman–Kac Formula (2016). arXiv: 1608.03856

  11. Lott, J.: Some geometric properties of the Bakry–émery–Ricci tensor. Comment. Math. Helv. 78(4), 865–883 (2003). https://doi.org/10.1007/s00014-003-0775-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Plank., H.: Stochastic Representation of the Gradient and Hessian of Diffusion Semigroups on Riemannian Manifolds, Ph.D. thesis. Universität Regensburg (2002)

  13. Priola, E., Wang, F.Y.: Gradient estimates for diffusion semigroups with singular coefficients. J. Funct. Anal. 236(1), 244–264 (2006). https://doi.org/10.1016/j.jfa.2005.12.010

    Article  MathSciNet  MATH  Google Scholar 

  14. Stroock, D.W.: An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, vol. 74. American Mathematical Society, Providence (2000)

    Google Scholar 

  15. Stroock, D.W., Turetsky, J.: Upper bounds on derivatives of the logarithm of the heat kernel. Commun. Anal. Geom. 6(4), 669–685 (1998). https://doi.org/10.4310/CAG.1998.v6.n4.a2

    Article  MathSciNet  MATH  Google Scholar 

  16. Thalmaier, A.: On the differentiation of heat semigroups and Poisson integrals. Stoch. Stoch. Rep. 61(3–4), 297–321 (1997). https://doi.org/10.1080/17442509708834123

    Article  MathSciNet  MATH  Google Scholar 

  17. Thalmaier, A., Wang, F.Y.: Gradient estimates for harmonic functions on regular domains in Riemannian manifolds. J. Funct. Anal. 155(1), 109–124 (1998). https://doi.org/10.1006/jfan.1997.3220

    Article  MathSciNet  MATH  Google Scholar 

  18. Veraar, M.: The stochastic Fubini theorem revisited. Stochastics 84(4), 543–551 (2012). https://doi.org/10.1080/17442508.2011.618883

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, F.Y.: Analysis for Diffusion Processes on Riemannian Manifolds, Advanced Series on Statistical Science & Applied Probability, vol. 18. World Scientific Publishing Co. Pte. Ltd., Hackensack (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Thompson.

Additional information

James Thompson is supported by the Fonds National de la Recherche Luxembourg (OPEN Project GEOMREV).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, J. Derivatives of Feynman–Kac Semigroups. J Theor Probab 32, 950–973 (2019). https://doi.org/10.1007/s10959-018-0824-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0824-2

Keywords

Mathematics Subject Classification (2010)

Navigation