Skip to main content
Log in

Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider branching processes in discrete time for structured population in varying environment. Each individual has a trait which belongs to some general state space and both its reproduction law and the trait inherited by its offsprings may depend on its trait and the environment. We study the long-time behavior of the population and the ancestral lineage of typical individuals under general assumptions. We focus on the mean growth rate and the trait distribution among the population. The approach relies on many-to-one formulae and the analysis of the genealogy, and a key role is played by well-chosen (possibly non-homogeneous) Markov chains. The applications use large deviations principles and the Harris ergodicity for these auxiliary Markov chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It means that \(\{ \mu \in \mathcal {M}_1(\mathcal {X}\times E) : I(\mu ) \le l\}\) is compact for the weak topology for any \(l\in \mathbb {R}\)

References

  1. Athreya, K., Kang, H.J.: Some limit theorems for positive recurrent branching Markov chains I. Adv. Appl. Prob. 30(3), 693–710 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, K., Kang, H.J.: Some limit theorems for positive recurrent branching Markov chains II. Adv. Appl. Prob. 30(3), 711–722 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Athreya, K.B., Karlin, S.: On branching processes with random environments II: limit theorems. Ann. Math. Stat. 42, 1843–1858 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Athreya, K.B.: Change of measure of Markov chains and the \(L\log L\) theorem for branching processes. Bernoulli 6(2), 323–338 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baillon, J.-B., Clément, P., Greven, A., den Hollander, F.A.: Variational approach to branching random walk in random environment. Ann. Probab. 21(1), 290–317 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bansaye, V.: Proliferating parasites in dividing cells: Kimmel’s branching model revisited. Ann. Appl. Probab. 18(3), 967–996 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bansaye, V., Delmas, J.-F., Marsalle, L., Tran, V.C.: Limit theorems for Markov processes indexed by continuous time Galton–Watson trees. Ann. Appl. Probab. 21(6), 2263–2314 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bansaye, V., Lambert, A.: New approaches of source-sink metapopulations decoupling the roles of demography and dispersal. To appear in Theor. Pop, Biology (2012)

  9. Bansaye, V., Huang, C.: Weak law of large numbers for some Markov chains along non homogeneous genealogies. ESAIM 19, 307–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bansaye, V., Camanès, A.: Aging branching process and queuing for an infinite bus line. (2016). arXiv:1506.04168

  11. Biggins, J.D.: Martingale convergence in the branching random walk. J. Appl. Probab. 14, 25–37 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Biggins, J.D., Cohn, H., Nerman, O.: Multi-type branching in varying environment. Stoch. Proc. Appl. 83, 357–400 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Biggins, J.D.: The central limit theorem for the supercritical branching random walk and related results. Stoch. Proc. Appl. 34, 255–274 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cloez, B.: Limit theorems for some branching measure-valued processes. (2011). arXiv:1106.0660

  15. Chauvin, B., Rouault, A.: KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Relat. Fields 80(2), 299–314 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chauvin, B., Rouault, A., Wakolbinger, A.: Growing conditioned trees. Stoch. Process. Appl. 39, 117–130 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chow, Y., Teicher, H.: Probability Theory: Independence. Interchangeability, Martingales (1988)

    Book  MATH  Google Scholar 

  18. Cohn, H.: On the growth of the supercritical multitype branching processes in random environment. Ann. Probab. 17(3), 1118–1123 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Comets, F., Popov, S.: On multidimensional branching random walks in random environment. Ann. Probab. 35(1), 68–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Comets, F., Popov, S.: Shape and local growth for multidimensional branching random walks in random environment. ALEA 3, 273–299 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Comets, F., Yoshida, N.: Branching random walks in space-time random environment: survival probability, global and local growth rates. J. Theor. Probab. 24, 657–687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. Applications of Mathematics (New York) 38, 2nd edn. (1998)

  23. Delmas, J.-F., Marsalle, L.: Detection of cellular aging in a Galton–Watson process. Stoch. Process. Appl. 120, 2495–2519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ethier, S.N., Kurtz, T.G.: Markov Processes. Characterization and Convergence. John Wiley & Sons, New York (1986)

    Book  MATH  Google Scholar 

  25. Gorostiza, L.G., Roelly, S., Wakolbinger, A.: Persistence of critical multitype particle and measure branching processes. Probab. Theory Relat. Fields 92(3), 313–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kallenberg, O.: Stability of critical cluster fields. Math. Nachr. 77, 7–43 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31(2), 457–469 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gantert, N., Müller, S., Popov, S., Vachkovskaia, M.: Survival of branching random walks in random environment. J. Theor. Probab. 23, 1002–1014 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Geiger, J.: Elementary new proofs of classical limit theorems for Galton–Watson processes. J. Appl. Prob. 36, 301–309 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Georgii, H.O., Baake, E.: Supercritical multitype branching processes: the ancestral types of typical individuals. Adv. Appl. Probab. 35(4), 1090–1110 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Guyon, J.: Limit theorems for bifurcating Markov chains. Application to the detection of cellular aging. Ann. Appl. Probab. 17, 1538–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harris, S. C., Roberts, M. I.: The many-to-few lemma and multiple spines. in Ann. Inst. (2012) Henri Poincaré, arXiv:1106.4761

  33. Harris, S.C., Roberts, M.I.: A strong law of large numbers for branching processes: almost sure spine events. Electr. Commun. Probab. 19, 28 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Jagers, P., Nerman, O.: The asymptotic composition of supercritical multi-type branching populations. In: Séminaire de Probabilités, XXX, volume 1626 of Lecture Notes in Math., pages 40-54. Springer, Berlin (1996)

  35. Jones, O.D.: On the convergence of multitype branching processes with varying environments. Ann. Appl. Probab. 7, 772–801 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kaplan, N.: Some results about multidimensional branching processes with random environments. Ann. Probab. 2(3), 441–455 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kurtz, T.: Inequalities for law of large numbers. Ann. Math. Statist. 43, 1874–1883 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kurtz, T., Lyons, R., Pemantle, R., Peres, Y.: A conceptual proof of the Kesten–Stigum theorem for multi-type branching processes. In: Athreya, K.B., Jagers, P. (eds.) Classical and Modern Branching Processes, pp. 181–185. Springer, New York (1997)

    Chapter  MATH  Google Scholar 

  39. Lyons, R., Pemantle, R., Peres, Y.: Conceptual proofs of \(L\log L\) criteria for mean behavior of branching processes. Ann. Probab. 23(3), 1125–1138 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lyons, R.: A simple path to Biggins’ martingale convergence for branching random walk. In: Classical and Modern Branching Processes (Minneapolis, MN, 1994), 84 of IMA Vol. Math. Appl., pp. 217–221. Springer, New York (1997)

  41. Meyn, S., Tweedie, L.: Markov Chains and Stochastic Stability. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  42. Mode, C.J.: Multi-Type Branching Processes-Theory and Application, p. 300. American Elsevier Publishing Company, Inc., New York (1971)

    Google Scholar 

  43. Mischler, S., Scher, J.: Spectral analysis of semigroups and growth-fragmentation equations To appear in Ann. Inst. H. Poincaré Anal. Non Linéaire (2013). arXiv:1310.7773

  44. Mukhamedov, F.: Weak ergodicity of nonhomogeneous Markov chains on noncommutative L1-spaces. Banach J. Math. Anal. 7(2), 53–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nakashima, M.: Almost sure central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 21(1), 351–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nerman, O., Jagers, P.: The stable double infinite pedigree process of supercritical branching populations. Z. Wahrsch. Verw. Gebiete 65(3), 445–460 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  47. Seneta, E.: Non-negative Matrices and Markov Chains, p. 21. Springer, Berlin (2006)

    MATH  Google Scholar 

  48. Seppäläinen, T.: Large Deviations for Markov chains with Random Transitions. Ann. Prob. 22(2), 713–748 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tanny, D.: A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stoch. Process. Appl. 28(1), 123–139 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yoshida, N.: Central limit theorem for random walk in random environment. Ann. Appl. Probab. 18(4), 1619–1635 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially funded by Chair Modelisation Mathematique et Biodiversite VEOLIA-Ecole Polytechnique-MNHN-F.X, the professorial chair Jean Marjoulet, the project MANEGE ‘Modèles Aléatoires en Écologie, Génétique et Évolution’ 09-BLAN-0215 of ANR (French National Research Agency). The author is also grateful to Clément Dombry for mentioning [48].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Bansaye.

Appendix: Fixed Environment and Spectral Gap of the Mean Operator

Appendix: Fixed Environment and Spectral Gap of the Mean Operator

In this section, we recover standard results in the fixed environment case from the statements of the previous sections. Thus, we set \(\mathbb {P}:=\mathbb {P}_{\mathbf{e}}\) and

$$\begin{aligned} m_n(x,.): =m_n(x,\mathbf{e}, .), \qquad m_n(\mu ,.)=\int _{\mathcal {X}}\mu (\mathrm{d}x)m_n(x,.) \end{aligned}$$

for any \(x\in \mathcal {X}\) and \(\mu \in \mathcal {M}(\mathcal {X})\). We consider a subspace \(\mathfrak M\) of \(\mathcal M(\mathcal {X})\) stable by addition which contains \(\mathcal {M}_1(\mathcal {X})\). We endow \(\mathfrak M\) with a norm \(\parallel . \parallel _{\mathfrak M}\) and assume that there exists \(c>0\) such that \(\parallel \mu \parallel _{\mathfrak M}\le c\mu (\mathcal {X})\) for any \(\mu \in \mathfrak M\) and that \(\mu \rightarrow m_1(\mu ,.)\) is a bounded endomorphism on \((\mathfrak M, \parallel . \parallel _\mathfrak M)\). We denote by \(\mathfrak M'\) the topological dual of \(\mathfrak M\) and require the following spectral properties.

Assumption 4

There exists \((\lambda , \mu _0, f_0)\in (1,\infty ]\times \mathcal M_1(\mathcal {X}) \times \mathfrak M'\) such that \(\inf _{x\in \mathcal {X}} f_0(\delta _x)>0\) and

$$\begin{aligned} m_1(\mu _0,.)=\lambda \mu _0(.), \qquad f_0(m_1(., \mathrm{d}x))=\lambda f_0(.). \end{aligned}$$

Moreover, there exists \(a<\lambda \) and \(c>0\) such that

$$\begin{aligned} \parallel m_n(\mu ,.)- \lambda ^n f_0(\mu )\mu _0(.)\parallel _\mathfrak M \le ca^n \parallel \mu - f_0(\mu ) \mu _0(.)\parallel _\mathfrak M. \end{aligned}$$

When \(\mathcal {X}\) is finite, Perron Frobenius theory ensures that the previous Assumptions hold if the matrix given by the mean operator \(m_1\) is aperiodic and irreducible. We refer to [47] for details and extension to a denumerable state space \(\mathcal {X}\). Moreover, Krein Rutman Theorem allows to tackle the non-denumerable framework when the mean operator is compact and positive. Let us finally note that several techniques in analysis allow to go beyond these assumptions via the decompositions of the operator, see [43], where an overview of the results in the continuous time framework is given.

The previous assumption ensures that for any nonnegative function f such that \(\mu _0(f) \in (0,\infty )\) and any \(\mu \in \mathfrak M\),

$$\begin{aligned} m_n(\mu ,f)\sim \lambda ^n f_0(\mu ) \mu _0(f) \qquad \text {and} \qquad m_n(\mu , \mathcal {X})\sim f_0(\mu )\lambda ^n\qquad (n\rightarrow \infty ). \end{aligned}$$

Proposition 4

Let \(f\in \mathcal B_b(\mathcal {X})\) and \(x_0\in \mathcal {X}\). If Assumption 4 holds and \(\sup _{x \in \mathcal {X}}\mathbb {E}(N(x)^2 )<\infty ,\) then

  1. (i)

    \(Z_n(\mathcal {X})/m_n(x_0,\mathcal {X})\) is bounded in \(L^2_{\delta _{x_0}}\);

  2. (ii)

    \(f_0(Z_n)/\lambda ^n\) converges \(\mathbb {P}_{\delta _{x_0}}\) a.s. to \(W \in [0,\infty )\) and \(\mathbb {P}_{\delta _{x_0}}(W>0)>0\);

  3. (iii)

    \(Z_n(f)/ Z_n(\mathcal {X}) {\longrightarrow } \mu _0(f)\) as \(n\rightarrow \infty \), \(\mathbb {P}_{ \delta _{x_0}}\) a.s. on the event \(\{W>0\}.\)

Proof

First, we recall that \(f_0(Z_n)/\lambda ^n\) is martingale since \(f_0\) is the eigenvector of the adjoint of the mean operator. Indeed, denoting by

$$\begin{aligned} Z_{1,u}=\sum _{i=1}^{N(u)} \delta _{X(ui)} \end{aligned}$$

for \(u \in \mathbb {G}_n\) the punctual measures associated with the offsprings of each individual in generation n and combining the linearity of \(f_0\) and \(\mathbb {E}\), we get :

$$\begin{aligned} \mathbb {E}(f_0(Z_{n+1}) \ \vert \ \mathcal F_n)= & {} \mathbb {E}\left( \sum _{u\in \mathbb {G}_{n}} f_0(Z_{1,u}) \ \vert \ \mathcal F_n\right) = \sum _{u\in \mathbb {G}_{n}} f_0 (\mathbb {E}(Z_{1,u} \ \vert \ \mathcal F_n)) \\= & {} \sum _{u\in \mathbb {G}_{n}} \lambda f_0(\delta _{X(u)}) = \lambda f_0(Z_n). \end{aligned}$$

Second, we use Assumption 4 and the fact that \(0<\inf _{x\in \mathcal {X}}f_0(\delta _x)\le \sup _{x\in \mathcal {X}}f_0(\delta _x)<\infty \) to check that there exists \(C>0\) such that for any \(x,y\in \mathcal {X}\)

$$\begin{aligned} m_n(x,\mathcal {X})\le C m_n(y,\mathcal {X}) \end{aligned}$$

Adding that \(m_n(x_0,\mathcal {X})\) grows geometrically with rate \(\lambda >1\), we can follow the first part of the proof of Lemma 6 to check that (12) holds and prove (i). Thus, \(Z_n(\mathcal {X})/m_n(x,\mathcal {X})\) is bounded in \(L^2\) and so does \(f_0(Z_n)/\lambda ^n\) since \(f_0\) is bounded and \(\parallel Z_n \parallel _{\mathfrak M} \le c Z_n(\mathcal {X})\). We deduce that the martingale limit of \(f_0(Z_n)/\lambda ^n\) is non-degenerated and \((i)-(ii)\) are proved. Let us now focus on

$$\begin{aligned} Q_n(x,f)=m_n(x,f)/m_n(x,\mathcal {X}). \end{aligned}$$

Using the second part of Assumption 4 and \(f_0\) bounded, there exist constants \(c',c''\) such that for every \(y\in \mathcal {X}\)

$$\begin{aligned} \vert Q_n(y,f)-\mu _0(f) \vert \le c'(a/\lambda )^n \parallel \delta _y-f_0(\delta _y)\mu _0\parallel _{\mathfrak M}\le c''(a/\lambda )^n \end{aligned}$$

and

$$\begin{aligned} \vert Q_n(y,f)-Q_n(z,f) \vert \le 2c''(a/\lambda )^n. \end{aligned}$$

It ensures that condition (13) holds since \(a<\lambda \) and we can apply Theorem 4 to get

$$\begin{aligned} \frac{Z_n(f)-Z_n(\mathcal {X})\mu _0(f) }{m_n(x,\mathcal {X})} {\mathop {\longrightarrow }\limits ^{n\rightarrow \infty }} 0 \qquad \mathbb {P}_{ \delta _x} \quad \text {a.s}. \end{aligned}$$

Adding that \(\liminf _{n\rightarrow \infty } Z_n(\mathcal {X})/m_n(x,\mathcal {X})>0\) a.s. on the event \(\{W>0\}\) since \(f_0\) is bounded ends up the proof. \(\square \)

Let us give some additional comments. Checking that the martingale limit W is non-degenerated is delicate in general. Classical \(N\log N\) moment assumptions for single-type population in Kesten Stigum theorem (see [38, 39]) can be extended to the case \(\# \mathcal {X}<\infty \) [38], and less explicit but more general criteria can be found in [4] for \(\#\mathcal {X}=\infty \). Here, we have used the \(L^2\) computations of the previous section to get a strong law of large numbers for a general state space \(\mathcal {X}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansaye, V. Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment. J Theor Probab 32, 249–281 (2019). https://doi.org/10.1007/s10959-018-0825-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0825-1

Keywords

Mathematics Subject Classification (2010)

Navigation