Skip to main content
Log in

On Hitting Time, Mixing Time and Geometric Interpretations of Metropolis–Hastings Reversiblizations

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Given a target distribution \(\mu \) and a proposal chain with generator Q on a finite state space, in this paper, we study two types of Metropolis–Hastings (MH) generator \(M_1(Q,\mu )\) and \(M_2(Q,\mu )\) in a continuous-time setting. While \(M_1\) is the classical MH generator, we define a new generator \(M_2\) that captures the opposite movement of \(M_1\) and provide a comprehensive suite of comparison results ranging from hitting time and mixing time to asymptotic variance, large deviations and capacity, which demonstrate that \(M_2\) enjoys superior mixing properties than \(M_1\). To see that \(M_1\) and \(M_2\) are natural transformations, we offer an interesting geometric interpretation of \(M_1\), \(M_2\) and their convex combinations as \(\ell ^1\) minimizers between Q and the set of \(\mu \)-reversible generators, extending the results by Billera and Diaconis (Stat Sci 16(4):335–339, 2001). We provide two examples as illustrations. In the first one, we give explicit spectral analysis of \(M_1\) and \(M_2\) for Metropolized independent sampling, while in the second example, we prove a Laplace transform order of the fastest strong stationary time between birth–death \(M_1\) and \(M_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aldous, D., Fill, J.A.: Reversible Markov Chains and Random Walks on Graphs, 2002. Unfinished Monograph, Recompiled. http://www.stat.berkeley.edu/~aldous/RWG/book.html (2014)

  2. Bierkens, J.: Non-reversible Metropolis–Hastings. Stat. Comput. 26(6), 1213–1228 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Billera, L.J., Diaconis, P.: A geometric interpretation of the Metropolis–Hastings algorithm. Stat. Sci. 16(4), 335–339 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Chen, F., Lovász, L., Pak, I.: Lifting Markov chains to speed up mixing. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 275–281 (1999)

  5. Chen, M.-F.: From Markov Chains to Non-equilibrium Particle Systems. World Scientific, Singapore (1992)

    MATH  Google Scholar 

  6. Chen, T.-L., Hwang, C.-R.: Accelerating reversible Markov chains. Stat. Probab. Lett. 83(9), 1956–1962 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Chen, T.-L., Chen, W.-K., Hwang, C.-R., Pai, H.-M.: On the optimal transition matrix for Markov chain Monte Carlo sampling. SIAM J. Control Optim. 50(5), 2743–2762 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Choi, M.C.: Metropolis–Hastings reversiblizations of non-reversible Markov chains. arXiv:1706.00068 (2017)

  9. Cui, H., Mao, Y.-H.: Eigentime identity for asymmetric finite Markov chains. Front. Math. China 5(4), 623–634 (2010)

    MathSciNet  MATH  Google Scholar 

  10. den Hollander, F.: Large Deviations, Volume 14 of Fields Institute Monographs. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  11. Diaconis, P., Miclo, L.: On characterizations of metropolis type algorithms in continuous time. ALEA Lat. Am. J. Probab. Math. Stat. 6, 199–238 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Diaconis, P., Saloff-Coste, L.: Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16(4), 2098–2122 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Diaconis, P., Holmes, S., Neal, R.M.: Analysis of a nonreversible Markov chain sampler. Ann. Appl. Probab. 10(3), 726–752 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Doyle, P.-G.: Energy for Markov Chains. http://www.math.dartmouth.edu/doyle (1994)

  15. Fill, J.A.: On hitting times and fastest strong stationary times for skip-free and more general chains. J. Theor. Probab. 22(3), 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Frigessi, A., Hwang, C.-R., Younes, L.: Optimal spectral structure of reversible stochastic matrices, Monte Carlo methods and the simulation of Markov random fields. Ann. Appl. Probab. 2(3), 610–628 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Gaudillière, A., Landim, C.: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Relat. Fields 158(1–2), 55–89 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Geyer, C.-J., Mira, A.: On non-reversible Markov chains. Fields Inst. Commun. 26, 93–108 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  20. Huang, L.-J., Mao, Y.-H.: Dirichlet principles for asymptotic variance of markov chains. (preprint)

  21. Huang, L.-J., Mao, Y.-H.: On some mixing times for nonreversible finite Markov chains. J. Appl. Probab. 54(2), 627–637 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Huang, L.-J., Mao, Y.-H.: Variational principles of hitting times for non-reversible Markov chains. J. Math. Anal. Appl. 468(2), 959–975 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Hwang, C.-R., Hwang-Ma, S.-Y., Sheu, S.-J.: Accelerating diffusions. Ann. Appl. Probab. 15(2), 1433–1444 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov Processes, Volume 345 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2012)

  25. Leisen, F., Mira, A.: An extension of Peskun and Tierney orderings to continuous time Markov chains. Stat. Sin. 18(4), 1641–1651 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Liggett, T.-M.: Interacting Particle Systems. Springer, Berlin (1985)

    MATH  Google Scholar 

  27. Liu, J.S.: Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Stat Comput 6(2), 113–119 (1996)

    Google Scholar 

  28. Mao, Y.-H.: The eigentime identity for continuous-time ergodic Markov chains. J. Appl. Probab. 41(4), 1071–1080 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Metropolis, N., Rosenbluth, A.-W., Rosenbluth, M.-N., Teller, A.-H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    MATH  Google Scholar 

  30. Oliveira, R.I.: Mixing and hitting times for finite Markov chains. Electron. J. Probab. 17(70), 12 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Peskun, P.H.: Optimum Monte-Carlo sampling using Markov chains. Biometrika 60, 607–612 (1973)

    MathSciNet  MATH  Google Scholar 

  32. Roberts, G.O., Rosenthal, J.S.: Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab. 2(2), 13–25 (1997). (electronic)

    MathSciNet  MATH  Google Scholar 

  33. Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Sun, Y., Gomez, F., Schmidhuber, J.: Improving the asymptotic performance of Markov chain Monte-Carlo by inserting vortices. In: NIPS, USA, pp. 2235–2243 (2010)

  35. Tierney, L.: A note on Metropolis–Hastings kernels for general state spaces. Ann. Appl. Probab. 8(1), 1–9 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for constructive comments that improved the presentation of the manuscript. Michael Choi acknowledges support from the Chinese University of Hong Kong, Shenzhen grant PF01001143. Lu-Jing Huang acknowledges support from NSFC No. 11771047 and Probability and Statistics: Theory and Application (IRTL1704). The authors would also like to thank Professor Yong-Hua Mao for his hospitality during their visit to Beijing Normal University, where this work was initiated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. H. Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M.C.H., Huang, LJ. On Hitting Time, Mixing Time and Geometric Interpretations of Metropolis–Hastings Reversiblizations. J Theor Probab 33, 1144–1163 (2020). https://doi.org/10.1007/s10959-019-00903-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-019-00903-2

Keywords

Mathematics Subject Classification (2010)

Navigation