Skip to main content
Log in

Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel self-promoted curing phthalonitrile monomer was synthesized via substitution reaction of 4-nitrophthalonitrile and 3-aminophenol at the presence of K2CO3 in the dimethylsulfoxide solvent. The phthalonitrile was characterized by Fourier transform infrared spectra, nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, dynamic rheological analysis and thermal gravimetric analysis. The phthalonitrile monomer can be thermally polymerized with self-promoted curing behaviors. The prepolymerization reaction of the phthalonitrile prepolymer was investigated and the phthalonitrile prepolymer exhibited the desirable processing feature. With the curing process of low curing temperature and short curing time, the cured polymers exhibited high glass transition temperatures (241–270 °C) and excellent thermal stabilities with the 5 % weight loss temperature (395–441 °C). The novel phthalonitrile can be a good candidate as matrix for high performance polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shaw SJ (1982) Mater Sci Technol 3:589–99

    Article  Google Scholar 

  2. Hergenrother PM (2003) High Perform Polym 15:3–45

    CAS  Google Scholar 

  3. Ho TH, Hwang HJ, Shieh JY, Chung MC (2009) React Funct Polym 69:176–182

    Article  CAS  Google Scholar 

  4. Keller TM (1988) J Polym Sci Part A Polym Chem 26:3199–3212

    Article  CAS  Google Scholar 

  5. Zhang WX, Wang YZ, Sun CF (2007) J Polym Res 14:467–474

    Article  CAS  Google Scholar 

  6. Yang XL, Zhan YQ, Yang J, Zhong JC, Zhao R, Liu XB (2012) J Polym Res 19:9806

    Article  Google Scholar 

  7. Hsiao SH, Huang PC (1997) J Polym Res 4:183–190

    Article  CAS  Google Scholar 

  8. Yu GP, Liu C, Li B, Wang LW, Wang JY, Jian XG (2012) J Polym Res 19:9829

    Article  Google Scholar 

  9. Laskoski M, Dominguez DD, Keller TM (2005) J Polym Sci Part A Polym Chem 43:4136–4137

    Article  CAS  Google Scholar 

  10. Dominguez DD, Keller TM (2006) High Perform Polym 18:283–304

    Article  CAS  Google Scholar 

  11. Laskoski M, Keller TM, Qadri SB (2007) Polymer 48:7484–7489

    Article  CAS  Google Scholar 

  12. Laskoski M, Dominguez DD, Keller TM (2007) Polymer 48:6234–6240

    Article  CAS  Google Scholar 

  13. Keller TM, Dominguez DD (2005) Polymer 46:4614–4618

    Article  CAS  Google Scholar 

  14. Dominguez DD, Keller TM (2007) Polymer 48:91–97

    Article  CAS  Google Scholar 

  15. Sumner MJ, Sankarapandian M, McGrath JE, Riffle JS, Sorathia U (2002) Polymer 43:5069–5076

    Article  CAS  Google Scholar 

  16. Keller TM, Price TR (1982) J Macromol Sci Chem 18:931–937

    Article  Google Scholar 

  17. Sastri SB, Keller TM (1999) J Polym Sci Part A Polym Chem 37:2105–2111

    Article  CAS  Google Scholar 

  18. Burchill PJ (1994) J Polym Sci Part A Polym Chem 32:1–8

    Article  CAS  Google Scholar 

  19. Dominguez DD, Keller TM (2008) J Appl Polym Sci 110:2504–2515

    Article  CAS  Google Scholar 

  20. Sastri SB, Keller TM (1998) J Polym Sci Part A Polym Chem 36:1885–1890

    Article  CAS  Google Scholar 

  21. Keller TM (1994) Chem Mater 6:302–305

    Article  CAS  Google Scholar 

  22. Yang XL, Lei YJ, Zhong JC, Zhao R, Liu XB (2011) J Appl Polym Sci 119:882–887

    Article  CAS  Google Scholar 

  23. Zeng K, Hong HB, Zhou SH, Wu DM, Miao PK, Huang ZF, Yang G (2009) Polymer 50:5002–5006

    Article  CAS  Google Scholar 

  24. Du RH, Li WT, Liu XB (2009) Polym Degrad Stab 94:2178–2183

    Article  CAS  Google Scholar 

  25. Zuo F, Liu XB (2010) J Appl Polym Sci 117:1470–1475

    Google Scholar 

  26. Cao GP, Chen WJ, Wei WT, Liu XB (2007) Exp Polym Lett 8:512–518

    Article  Google Scholar 

  27. Sastri SB, Armistead JP, Keller TM (1996) Polym Compos 17:817–822

    Article  Google Scholar 

  28. Moore JA, Han DW (2009) Polymer 50:2551–2557

    Article  Google Scholar 

  29. Laza JM, Vilas JL, Mijangos F, Rodriguez M, Leon LM (2005) J Appl Polym Sci 98:818–824

    Article  CAS  Google Scholar 

  30. Jia K, Xu MZ, Zhao R, Liu XB (2011) Polym Int 60:414–421

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Major Science and Technology Project in Sichuan Province (2010 FZ 0117), “863” National Major Program of High Technology (2012AA03A212) and National Natural Science Foundation (No. 51173021) for the financial supports of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, H., Chen, Z., Zhang, J. et al. Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites. J Polym Res 19, 9918 (2012). https://doi.org/10.1007/s10965-012-9918-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9918-1

Keywords

Navigation