Skip to main content

Advertisement

Log in

Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Graphene derivatives are intensively used as high performance nano fillers for the fabrication of polymer nanocomposites. The challenge is to achieve significant improvement in interfacial adhesion between polymer matrix and reinforcing filler. In the present work, we report the preparation of polyvinyl chloride (PVC) /Graphene Oxide (GO) composite by the colloidal blending method. PVC/GO composite films were further studied using fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and polarized optical microscopy (POM). The effect of GO loading on wettability of PVC/GO composites films were studied by measuring contact angle of composites films. Optical microscopy reveals that GO have been dispersed homogeneously throughout the PVC matrix. From morphological studies, a network of a denser stacking and randomly aggregate structure having rough surface was observed as a function of GO loading. The values of contact angle decrease with respect to GO loading for all the liquids used. The solid surface energy (SE) of composite films was estimated using contact angle measurements. The surface energies were measured and compared using Fowke’s and Good-Grifalco methods with respect to four different liquids having a wider range of surface tensions (44≤ lv ≤ 72. 8 mJ/m2). The composite film surfaces were tuned by controlling incorporation of GO in order to optimize the surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebran D, Lau CN (2008) Nano Let 8:902–905

    Article  CAS  Google Scholar 

  2. Bolotin KI, Sikes KJ, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  3. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385–388

    Article  CAS  Google Scholar 

  4. Dumitrica T, Kodambaka S, Jun S (2012) J Nanophotonics 6:1–22

    Google Scholar 

  5. Ghosh S, Bao WZ, Nika DL, Subrina S, Pokatilov EP, Lau CN, Balandin AA (2010) Nat Mater 9:555–558

    Article  CAS  Google Scholar 

  6. Vadukumpully S, Paul J, Valiyaveettil S (2009) Carbon 47:3288–3294

    Article  CAS  Google Scholar 

  7. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  8. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Bobinger GS, Kim P, Geim AK (2007) Science 315:1379–1379

    Article  CAS  Google Scholar 

  9. Nevoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  Google Scholar 

  10. Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude DK, Barra AL, Sprinkle M, Berger C, Heer WAD, Potemski M (2008) Phys Rev Lett 101:267601–267604

    Article  CAS  Google Scholar 

  11. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  12. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52:5–25

    Article  CAS  Google Scholar 

  13. Kim F, Cote LJ, Huang J (2010) Adv Mater 22:1954–1958

    Article  CAS  Google Scholar 

  14. Bian J, Xiao M, Wang S, Wang XLY, Meng Y (2009) Chem Eng J 147:287–296

    Article  CAS  Google Scholar 

  15. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Prog Polym Sci 56:1178–1271

    CAS  Google Scholar 

  16. Hirata M, Gotou T, Ohba M (2005) Carbon 43:503–510

    Article  CAS  Google Scholar 

  17. Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515–6530

    Article  CAS  Google Scholar 

  18. Wan C, Chen B (2012) J Mater Chem 22:3637–3646

    Article  CAS  Google Scholar 

  19. Rusen E, Marculescu B, Butac L, Preda N, Mihut L (2008) Fullerenes, Nanotubes and Nanostructures 16:178–185

    Article  CAS  Google Scholar 

  20. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Carbon 49:198–205

    Article  CAS  Google Scholar 

  21. Hummers WSJ, Offman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  22. Metrangolo P, Meyer F, Pilati T, Resnati G (2008) Terraneo G Angew Chem Int 47:6114–6127

    Article  CAS  Google Scholar 

  23. Salavagione HJ, Miras MC, Barbero CA (2006) Macromol Rapid Commun 27:26–30

    Article  CAS  Google Scholar 

  24. Salavagione HJ, Martinez G (2011) Macromolecules 44:2685–2692

    Article  CAS  Google Scholar 

  25. Garbassi F, Morra M, Occhiello E (1994) Polymer surfaces from physics to technology. Wiley, Chichester

    Google Scholar 

  26. Wu S (1982) polymer interfaces and adhesion. Marcel Decker, New York

    Google Scholar 

  27. Pawde SM, Deshmukh K (2009) Polym Eng Sci 49:808–818

    Article  CAS  Google Scholar 

  28. Fowkes FM (1963) J Phys Chem 67:2538–2541

    Article  CAS  Google Scholar 

  29. Good RJ (1993) In contact angle, wettability and adhesion. In: Mittal KL (ed) VSP Utrecht, The Netherlands

  30. Moussa S, Atkinson G, Shall MSE, Shehata A, Abouzeid KM, Mohamed MB (2011) J Mater Chem 21:9608–9619

    Article  CAS  Google Scholar 

  31. Tikka HK, Suvanto M, Pakkanen TA (2004) J Colloid Interf Sci 273:388–393

    Article  CAS  Google Scholar 

  32. Gudarzi MM, Sharif F (2012) Exp Polym Lett 6:1017–1031

    Article  Google Scholar 

  33. Surajit K, Ankur KG, Swapan KD (2013) J Mater Sci 48:1729–1739

    Article  Google Scholar 

  34. Van Oss CJ, Giese RF (2002) Colloids and surface properties of clay and related minerals. Marcel Dekker, New York

    Google Scholar 

  35. Deshmukh RR, Shetty AR (2008) J Appl Polym Sci 107:3707–3717

    Article  CAS  Google Scholar 

  36. Fowkes FM (1962) J Phys Chem 66:382–382

    Article  CAS  Google Scholar 

  37. Fowkes FM (1968) J Colloid Interf Sci 28:493–505

    Article  CAS  Google Scholar 

  38. Dann RJ (1970) J Colloid Interf Sci 32:302–320

    Article  CAS  Google Scholar 

  39. Frank EM (2003) In contact angle, wettability and adhesion. In: Mittal KL (ed) VSP: Utrechtp.219

  40. Anastasiadis SH (1998) J Rheol 42:795–812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Naval Research Board, Defense Research and Development Organization (NRB-DRDO), New Delhi for financial support to this study under Project No.259/Mat./11-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deshmukh, K., Khatake, S.M. & Joshi, G.M. Surface properties of graphene oxide reinforced polyvinyl chloride nanocomposites. J Polym Res 20, 286 (2013). https://doi.org/10.1007/s10965-013-0286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0286-2

Keywords

Navigation